OpenCV By Example

Enhance your understanding of Computer Vision and image
processing by developing real-world projects in OpenCV 3

OpenCV By Example

Enhance your understanding of Computer Vision and
image processing by developing real-world projects in
OpenCV 3

Prateek Joshi
David Millan Escriva

Vinicius Godoy

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

OpenCV By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production reference: 1150116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-094-8

www . packtpub.com

www.packtpub.com

Credits

Authors
Prateek Joshi

David Millan Escriva

Vinicius Godoy

Reviewers
Emmanuel d'Angelo

Dr. Bryan Wai-ching CHUNG
Nikolaus Gradwohl

Luis Diaz Mas

Commissioning Editor
Ashwin Nair

Acquisition Editor
Tushar Gupta

Content Development Editor
Amey Varangaonkar

Technical Editor
Naveenkumar Jain

Copy Editor
Rashmi Sawant

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Prateek Joshi is a Computer Vision researcher and published author. He has over
eight years of experience in this field with a primary focus on content-based analysis
and deep learning. His work in this field has resulted in multiple patents, tech
demos, and research papers at major IEEE conferences. He is the author of OpenCV
with Python By Example, Packt Publishing.

He has won many hackathons using a wide variety of technologies related to image
recognition. His blog has been visited by users in more than 200 countries, and he
has been featured as a guest author in prominent tech magazines. He enjoys blogging
on topics, such as artificial intelligence, abstract mathematics, and cryptography. You
can visit his blog at www.prateekvjoshi.com

He is an avid coder who is passionate about building game-changing products. He
is particularly interested in intelligent algorithms that can automatically understand
the content to produce scene descriptions in terms of constituent objects. He
graduated from the University of Southern California and has worked for such
companies as Nvidia, Microsoft Research, Qualcomm, and a couple of early stage
start-ups in Silicon Valley. You can learn more about him on his personal website at

www.prateekj.com.

I would like to thank the reviewers for helping me refine this book.
I would also like to thank Packt Publishing for publishing this book.
Finally, I would like to thank my family for supporting me through
everything.

www.prateekvjoshi.com

David Millan Escriva was eight years old when he wrote his first program on an
8086 PC with BASIC language, which enabled the 2D plotting of BASIC equations.
He started with his computer development relationship and created many
applications and games.

In 2005, he completed his studies in IT from the Universitat Politécnica de Valencia
with honors in human-computer interaction supported by Computer Vision with
OpenCV (v0.96). He had a final project based on this subject and published it on HCI
Spanish Congress.

In 2014, he completed his Master's degree in artificial intelligence, computer
graphics, and pattern recognition, focusing on pattern recognition and
Computer Vision.

He participated in Blender source code, an open source and 3D-software project, and
worked in his first commercial movie, Plumiferos — Aventuras voladoras, as a computer
graphics software developer.

David now has more than 13 years of experience in IT, with more than nine years
of experience in Computer Vision, computer graphics, and pattern recognition,
working on different projects and start-ups, applying his knowledge of Computer
Vision, optical character recognition, and augmented reality.

He is the author of the DamilesBlog (http://blog.damiles.com), where he
publishes research articles and tutorials on OpenCV, Computer Vision in general,
and optical character recognition algorithms. He is the co-author of Mastering
OpenCV with Practical Computer Vision Projects Book and also the reviewer of GnuPlot
Cookbook by Lee Phillips, OpenCV Computer Vision with Python by Joseph Howse, Instant
Opencv Starter by Jayneil Dalal and Sohil Patel, all published by Packt Publishing.

I would like thank to my wife, Izaskun, my daughter, Eider, and my
son, Pau, for their unlimited patience and support in all moments.
They have changed my life and made it awesome. Love you all.

I would like to thank the OpenCV team and community that gives
us this wonderful library. I would also like to thank my co-authors
and Packt Publishing for supporting me and helping me complete
this book.

http://blog.damiles.com

Vinicius Godoy is a computer graphics university professor at PUCPR. He started
programming with C++ 18 years ago and ventured into the field of computer gaming
and computer graphics 10 years ago. His former experience also includes working

as an IT manager in document processing applications in Sinax, a company that
focuses in BPM and ECM activities, building games and applications for Positivo
Informatica, including building an augmented reality educational game exposed at
CEBIT and network libraries for Siemens Enterprise Communications (Unify).

As part of his Master's degree research, he used Kinect, OpenNI, and OpenCV to
recognize Brazilian sign language gestures. He is currently working with medical
imaging systems for his PhD thesis. He was also a reviewer of the OpenNI Cookbook,
Packt Publishing.

He is also a game development fan, having a popular site entirely dedicated to the
field called Ponto V (http://www.pontov.com.br). He is the cofounder of a start-
up company called Blackmuppet. His fields of interest includes image processing,
Computer Vision, design patterns, and multithreaded applications.

I would like to thank my wife, who supported me while writing this
book. Her incentive and cooperation was decisive.

I would also like to thank Fabio Binder, a teacher who introduced
me to computer graphics and gaming fields, which greatly helped
me in my computer programming career and brought me to PUCPR,
where I had access to several computer graphics-related software.

http://www.pontov.com.br

About the Reviewers

Emmanuel d'Angelo is a photography enthusiast, who managed to make his
way in the image processing field. After several years of working as a consultant
on various image-related high-tech projects, he is now working as a developer in
a photogrammetry start-up. You can find image-related thoughts and code on his
technical blog at http: //www.computersdontsee.net.

Dr. Bryan, Wai-ching CHUNG is an interactive media artist and design
consultant who lives in Hong Kong. His artworks have been exhibited at the

World Wide Video Festival, Multimedia Art Asia Pacific, Stuttgart Film Winter
Festival, Microwave International New Media Arts Festival, and the China Media
Art Festival. In the former Shanghai Expo 2010, he provided interactive design
consultancy to various industry leaders in Hong Kong and China. He studied
computer science in Hong Kong, interactive multimedia in London, and fine art

in Melbourne. He also develops software libraries for the popular open source
programming language, Processing. He is the author of the book, Multimedia
Programming with Pure Data. Currently, he is working as an assistant professor in the
Academy of Visual Arts, Hong Kong Baptist University, where he teaches subjects
on interactive arts, computer graphics, and multimedia. His website is http: //www.
magicandlove.com.

http://www.computersdontsee.net
http://www.magicandlove.com
http://www.magicandlove.com

Nikolaus Gradwohl was born in 1976 in Vienna, Austria, and always wanted
to become an inventor like Gyro Gearloose. When he got his first Atari, he figured
out that being a computer programmer was the closest he could get to that dream.
He wrote programs for nearly anything that can be programmed, ranging from an
8-bit microcontroller to mainframes for a living. In his free time, he likes to gain
knowledge of programming languages and operating systems.

He is the author of Processing 2: Creative Coding Hotshot, Packt Publishing.

You can see some of his work on his blog at http: //www.local-guru.net/.

Luis Diaz Mas is a C++ software engineer currently working at Pix4D, where

he plays the role of a software architect and develops image processing algorithms
that are oriented toward photogrammetry and terrain mapping. He received his
PhD in computer science from the University of Cordoba (Spain) that focuses on 3D
reconstructions and action recognition. Earlier, he worked for CATEC, a research
center for advanced aerospace technologies, where he developed the sensorial
systems for UAS (Unmanned Aerial Systems). He has reviewed other OpenCV
books published by Packt, and he is continuously looking forward to gaining more
knowledge of different topics, such as modern C++ 11/14, Python, CUDA, OpenCL,
and so on.

I would like to thank my parents for always supporting me and
giving me the freedom to do what I like the most in this life. I would
also like to thank my thesis directors, Rafa and Paco, who helped me
in my scientific career and from whom I have learned a lot. Finally, a
special mention to Celia, the woman who chose to share her life with
this software freak and the one who continuously reminds me that
there are more things in life apart from programming,.

http://www.local-guru.net/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF

and ePub files available? You can upgrade to the eBook version at www. PacktPub. com

and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

@ PACKT! i£°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents

Preface vii
Chapter 1: Getting Started with OpenCV 1
Understanding the human visual system 1
How do humans understand image content? 3
Why is it difficult for machines to understand image content? 4
What can you do with OpenCV? 5
In-built data structures and input/output 5
Image processing operations 6
Building GUI 6
Video analysis 7
3D reconstruction 8
Feature extraction 9
Object detection 9
Machine learning 10
Computational photography 10
Shape analysis 12
Optical flow algorithms 12
Face and object recognition 12
Surface matching 13
Text detection and recognition 13
Installing OpenCV 13
Windows 13
Mac OS X 14
Linux 16

Summary 17

[il

Table of Contents

Chapter 2: An Introduction to the Basics of OpenCV 19
Basic CMake configuration files 20
Creating a library 20
Managing dependencies 21
Making the script more complex 23
Images and matrices 26
Reading/writing images 29
Reading videos and cameras 33
Other basic object types 38

The vec object type 38
The Scalar object type 39
The Point object type 39
The Size object type 40
The Rect object type 40
RotatedRect object type 40
Basic matrix operations 41
Basic data persistence and storage 44
Writing to a file storage 44
Summary 47

Chapter 3: Learning the Graphical User Interface and

Basic Filtering 49
Introducing the OpenCV user interface 50
A basic graphical user interface with OpenCV 51
The graphical user interface with QT 56
Adding slider and mouse events to our interfaces 58
Adding buttons to a user interface 63
OpenGL support 68
Summary 74

Chapter 4: Delving into Histograms and Filters 75
Generating a CMake script file 76
Creating the Graphical User Interface 77
Drawing a histogram 79
Image color equalization 84
Lomography effect 87
The cartoonize effect 93
Summary 98

Lii]

Table of Contents

Chapter 5: Automated Optical Inspection,

Object Segmentation, and Detection 99
Isolating objects in a scene 100
Creating an application for AOI 103
Preprocessing the input image 104

Noise removal 105
Removing the background using the light pattern for segmentation 106
The thresholding operation 112
Segmenting our input image 112
The connected component algorithm 112
The findContours algorithm 119
Summary 123

Chapter 6: Learning Object Classification 125
Introducing machine learning concepts 126
Computer Vision and the machine learning workflow 130
Automatic object inspection classification example 133
Feature extraction 135

Training an SVM model 139
Input image prediction 146
Summary 148

Chapter 7: Detecting Face Parts and Overlaying Masks 149
Understanding Haar cascades 150
What are integral images? 152
Overlaying a facemask in a live video 154

What happened in the code? 157
Get your sunglasses on 158
Looking inside the code 161
Tracking your nose, mouth, and ears 162
Summary 162

Chapter 8: Video Surveillance, Background Modeling,

and Morphological Operations 163
Understanding background subtraction 164
Naive background subtraction 164

Does it work well? 167
Frame differencing 169

How well does it work? 173

[iii]

Table of Contents

The Mixture of Gaussians approach 174
What happened in the code? 177
Morphological image processing 178
What's the underlying principle? 178
Slimming the shapes 179
Thickening the shapes 180
Other morphological operators 181
Morphological opening 181
Morphological closing 182
Drawing the boundary 183
White Top-Hat transform 184
Black Top-Hat transform 186
Summary 187
Chapter 9: Learning Object Tracking 189
Tracking objects of a specific color 189
Building an interactive object tracker 192
Detecting points using the Harris corner detector 199
Shi-Tomasi Corner Detector 202
Feature-based tracking 204
The Lucas-Kanade method 205
The Farneback algorithm 210
Summary 215
Chapter 10: Developing Segmentation Algorithms for
Text Recognition 217
Introducing optical character recognition 218
The preprocessing step 220
Thresholding the image 220
Text segmentation 222
Creating connected areas 222
Identifying paragraph blocks 224
Text extraction and skew adjustment 227
Installing Tesseract OCR on your operating system 230
Installing Tesseract on Windows 231
Setting up Tesseract in Visual Studio 233
Installing Tesseract on Mac 236
Using Tesseract OCR library 236
Creating a OCR function 236
Sending the output to a file 240
Summary 241

[iv]

Table of Contents

Chapter 11: Text Recognition with Tesseract 243
How the text APl works 243
The scene detection problem 244
Extremal regions 245
Extremal region filtering 246
Using the text API 247
Text detection 247
Text extraction 255
Text recognition 258
Summary 263

Index 265

[v]

Preface

OpenCV is one of the most popular libraries used to develop Computer Vision
applications. It enables us to run many different Computer Vision algorithms in real
time. It has been around for many years, and it has become the standard library in
this field. One of the main advantages of OpenCV is that it is highly optimized and
available on almost all the platforms.

This book starts off by giving a brief introduction of various fields in Computer
Vision and the associated OpenCV functionalities in C++. Each chapter contains
real-world examples and code samples to demonstrate the use cases. This helps you
to easily grasp the topics and understand how they can be applied in real life. To
sum it up, this is a practical guide on how to use OpenCV in C++ and build various
applications using this library.

What this book covers

Chapter 1, Getting Started with OpenCV, covers installation steps on various operating
systems and provides an introduction to the human visual system as well as various
topics in Computer Vision.

Chapter 2, An Introduction to the Basics of OpenCV, discusses how to read/write images
and videos in OpenCV, and also explains how to build a project using CMake.

Chapter 3, Learning the Graphical User Interface and Basic Filtering, covers how to build
a graphical user interface and mouse event detector to build interactive applications.

Chapter 4, Delving into Histograms and Filters, explores histograms and filters and also
shows how we can cartoonize an image.

Chapter 5, Automated Optical Inspection, Object Segmentation, and Detection, describes
various image preprocessing techniques, such as noise removal, thresholding, and
contour analysis.

[vii]

Preface

Chapter 6, Learning Object Classification, deals with object recognition and machine
learning, and how to use Support Vector Machines to build an object classification
system.

Chapter 7, Detecting Face Parts and Overlaying Masks, discusses face detection and
Haar Cascades, and then explains how these methods can be used to detect various
parts of the human face.

Chapter 8, Video Surveillance, Background Modeling, and Morphological Operations,
explores background subtraction, video surveillance, and morphological image
processing and describes how they are connected to each other.

Chapter 9, Learning Object Tracking, covers how to track objects in a live video using
different techniques, such as color-based and feature-based tracking.

Chapter 10, Developing Segmentation Algorithms for Text Recognition, covers optical
character recognition, text segmentation, and provides an introduction to the
Tesseract OCR engine.

Chapter 11, Text Recognition with Tesseract, delves deeper into the Tesseract OCR
Engine to explain how it can be used for text detection, extraction, and recognition.

What you need for this book

The examples are built using the following technologies:

* OpenCV 3.0 or newer

* (CMake 3.3.x or newer

* Tesseract

* Leptonica (dependency of Tesseract)
* QT (optional)

* OpenGL (optional)

Detailed installation instructions are provided in the relevant chapters.

[viii]

Preface

Who this book is for

This book is for developers who are new to OpenCV and want to develop Computer
Vision applications with OpenCV in C++. A basic knowledge of C++ would be
helpful to understand this book. This book is also useful for people who want to

get started with Computer Vision and understand the underlying concepts. They
should be aware of basic mathematical concepts, such as vectors, matrices, matrix
multiplication, and so on, to make the most out of this book. During the course of
this book, you will learn how to build various Computer Vision applications from
scratch using OpenCV.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For a basic project based on an executable
build from one source code file, a two line cMakeLists . txt file is all that is needed ."

A block of code is set as follows:

#include "opencv2/opencv.hpp"
using namespace cv;

int main(int, char** argv)
{
FileStorage fs2("test.yml", FileStorage::READ) ;
Mat r;
fs2["Result"] >> r;
std::cout << r << std::endl;
fs2.release() ;
return 0O;

}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

@Path ("departments")

@Produces (MediaType.APPLICATION JSON)
public class DepartmentResource(
//Class implementation goes here...

}

[ix]

Preface

Any command-line input or output is written as follows:

C:\> setx -m OPENCV_DIR D:\OpenCV\Build\x64\vcll

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To show
the control panel we can push the last tool bar button, right click in any part of QT
Window and select Display properties window."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Instructions for running examples are available in the README . md file present in the
root folder of each project.

[x]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https: //www.packtpub.
com/sites/default/files/downloads/OpenCV_By Example ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xi]

https://www.packtpub.com/sites/default/files/downloads/OpenCV_By_Example_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCV_By_Example_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with OpenCV

Computer Vision applications are interesting and useful, but the underlying
algorithms are computationally intensive. With the advent of cloud computing, we
are getting more processing power to work with. The OpenCV library enables you to
run Computer Vision algorithms efficiently in real time. It has been around for many
years and it has become the standard library in this field. One of the main advantages
of OpenCV is that it is highly optimized and available on almost all platforms. The
discussions in this book will cover everything, including the algorithm we are using,
why we are using it, and how to implement it in OpenCV.

In this chapter, we are going to learn how to install OpenCV on various operating
systems. We will discuss what OpenCV offers out of the box and the various things
that we can do using the in-built functions.

By the end of this chapter, you will be able to answer the following questions:

* How do humans process visual data and how do they understand
image content?

* What can we do with OpenCV and what are the various modules available
in OpenCV that can be used to achieve those things?

* How to install OpenCV on Windows, Linux, and Mac OS X?

Understanding the human visual system

Before we jump into OpenCV functionalities, we need to understand why those
functions were built in the first place. It's important to understand how the human
visual system works so that you can develop the right algorithms. The goal of the
Computer Vision algorithms is to understand the content of images and videos.
Humans seem to do it effortlessly! So, how do we get machines to do it with the
same accuracy?

[11]

Getting Started with OpenCV

Let's consider the following figure:

R
Human 4
eye -

The human eye captures all the information that comes along such as color, shapes,
brightness, and so on. In the preceding image, the human eye captures all the
information about the two main objects and stores it in a certain way. Once we
understand how our system works, we can take advantage of this to achieve what
we want. For example, here are a few things we need to know:

* Our visual system is more sensitive to low frequency content than high
frequency content. Low frequency content refers to planar regions where pixel
values don't change rapidly and high frequency content refers to regions with
corners and edges, where pixel values fluctuate a lot. You will have noticed
that we can easily see if there are blotches on a planar surface, but it's difficult
to spot something like that on a highly textured surface.

* The human eye is more sensitive to changes in brightness as compared to
changes in color.

* Our visual system is sensitive to motion. We can quickly recognize if
something is moving in our field of vision even though we are not directly
looking at it.

[2]

Chapter 1

* We tend to make a mental note of salient points in our field of vision. Let's
consider a white table with four black legs and a red dot at one of the corners
of the table surface. When you look at this table, you'll immediately make
a mental note that the surface and legs have opposing colors and there is a
red dot on one of the corners. Our brain is really smart that way! We do this
automatically so that we can immediately recognize it if we encounter
it again.

To get an idea of our field of view, let's take a look at the top view of a human and
the angles at which we see various things:

Direction
of gaze

Our visual system is actually capable of a lot more things, but this should be good
enough to get us started. You can explore further by reading up on Human Visual
System Models on the internet.

How do humans understand image
content?

If you look around, you will see a lot of objects. You may encounter many different
objects every day, and you recognize them almost instantaneously without any
effort. When you see a chair, you don't wait for a few minutes before realizing that it
is, in fact, a chair. You just know that it's a chair right away! Now, on the other hand,
computers find it very difficult to do this task. Researchers have been working for
many years to find out why computers are not as good as we are at this.

[31]

Getting Started with OpenCV

To get an answer to this question, we need to understand how humans do it. The
visual data processing happens in the ventral visual stream. This ventral visual
stream refers to the pathway in our visual system that is associated with object
recognition. It is basically a hierarchy of areas in our brain that helps us recognize
objects. Humans can recognize different objects effortlessly, and we can cluster
similar objects together. We can do this because we have developed some sort of
invariance toward objects of the same class. When we look at an object, our brain
extracts the salient points in such a way that factors such as orientation, size,
perspective, and illumination don't matter.

A chair that is double the normal size and rotated by 45 degrees is still a chair. We
can easily recognize it because of the way we process it. Machines cannot do this
so easily. Humans tend to remember an object based on its shape and important
features. Regardless of how the object is placed, we can still recognize it. In our
visual system, we build these hierarchical invariances with respect to position,
scale, and viewpoint that help us to be very robust.

If you look deeper in our system, you will see that humans have cells in their visual
cortex that can respond to shapes, such as curves and lines. As we move further
along our ventral stream, we will see more complex cells that are trained to respond
to more complex objects, such as trees, gates, and so on. The neurons along our
ventral stream tend to show an increase in the size of the receptive field. This is
coupled with the fact that the complexity of their preferred stimuli increases as well.

Why is it difficult for machines to understand
image content?

We now understand how visual data enters the human visual system and how our
system processes it. The issue is that we still don't completely understand how our
brain recognizes and organizes this visual data. We just extract some features from
images and ask the computer to learn from them using machine learning algorithms.
We still have those variations such as shape, size, perspective, angle, illumination,
occlusion, and so on. For example, the same chair looks very different to a machine
when you look at it from the side view. Humans can easily recognize that it's a chair
regardless of how it's presented to us. So, how do we explain this to our machines?

[4]

Chapter 1

One way to do this would be to store all the different variations of an object,
including sizes, angles, perspectives, and so on. But this process is cumbersome and
time-consuming! Also, it's actually not possible to gather data that can encompass
every single variation. The machines will consume a huge amount of memory and
a lot of time to build a model that can recognize these objects. Even with all this, if
an object is partially occluded, computers still won't be able to recognize it. This is
because they think that this is a new object. So, when we build a Computer Vision
library, we need to build the underlying functional blocks that can be combined
in many different ways to formulate complex algorithms. OpenCV provides a lot
of these functions and they are highly optimized. So, once we understand what
OpenCV provides out of the box, we can use it effectively to build interesting
applications. Let's go ahead and explore this in the next section.

What can you do with OpenCV?

Using OpenCV, you can pretty much do every Computer Vision task that you can
think of. Real-life problems require you to use many blocks together to achieve the
desired result. So, you just need to understand what modules and functions to use to
get what you want. Let's understand what OpenCV can do out of the box.

In-built data structures and input/output

One of the best things about OpenCV is that it provides a lot of in-built primitives

to handle operations related to image processing and Computer Vision. If you have
to write something from scratch, you will have to define things, such as an image,
point, rectangle, and so on. These are fundamental to almost any Computer Vision
algorithm. OpenCV comes with all these basic structures out of the box, and they

are contained in the core module. Another advantage is that these structures have
already been optimized for speed and memory, so you don't have to worry about the
implementation details.

The imgcodecs module handles reading and writing image files. When you operate
on an input image and create an output image, you can save it as a JPG or a PNG

file with a simple command. You will be dealing with a lot of video files when you
are working with cameras. The videoio module handles everything related to the
input/output of video files. You can easily capture a video from a webcam or read a
video file in many different formats. You can even save a bunch of frames as a video
file by setting properties such as frames per second, frame size, and so on.

[51]

Getting Started with OpenCV

Image processing operations

When you write a Computer Vision algorithm, there are a lot of basic image
processing operations that you will use over and over again. Most of these functions
are present in the imgproc module. You can do things such as image filtering,
morphological operations, geometric transformations, color conversions, drawing
on images, histograms, shape analysis, motion analysis, feature detection, and so on.
Let's consider the following figure:

The right-hand side image is a rotated version of the left-hand side image.

We can do this transformation with a single line in OpenCV. There is another
module called ximgproc that contains advanced image processing algorithms
such as structured forests for edge detection, domain transform filters, adaptive
manifold filters, and so on.

Building GUI

OpenCV provides a module called highgui that handles all the high-level

user interface operations. Let's say that you are working on a problem and you want
to check what the image looks like before you proceed to the next step. This module
has functions that can be used to create windows to display images and/or video.
There is also a waiting function that will wait until you hit a key on your keyboard
before it goes to the next step. There is a function that can detect mouse events as
well. This is very useful to develop interactive applications. Using this functionality,
you can draw rectangles on these input windows and then proceed based on the
selected region.

[6]

Chapter 1

Consider the following image:

Input

As you can see, we have drawn a green rectangle on the image and applied a negative
film effect to that region. Once we have the coordinates of this rectangle, we can
operate only on that region.

Video analysis

Video analysis includes tasks such as analyzing the motion between successive frames
in a video, tracking different objects in a video, creating models for video surveillance,
and so on. OpenCV provides a module called video that can handle all of this. There is
a module called videostab that deals with video stabilization. Video stabilization is an
important part of video cameras. When you capture videos by holding the camera in
your hands, it's hard to keep your hands perfectly steady. If you look at that video as it
is, it will look bad and jittery. All modern devices use video stabilization techniques to
process the videos before they are presented to the end user.

[71

Getting Started with OpenCV

3D reconstruction

3D reconstruction is an important topic in Computer Vision. Given a set of 2D
images, we can reconstruct the 3D scene using the relevant algorithms. OpenCV
provides algorithms that can find the relationship between various objects in these
2D images to compute their 3D positions. We have a module called calib3d that can
handle all this. This module can also handle camera calibration, which is essential to
estimate the parameters of the camera. These parameters are basically the internal
parameters of any given camera that uses them to transform the captured scene into
an image. We need to know these parameters to design algorithms, or else we might

get unexpected results. Let's consider the following figure:

4
Q)

As shown in the preceding image, the same object is captured from multiple poses.

Our job is to reconstruct the original object using these 2D images.

[8]

Chapter 1

Feature extraction

As discussed earlier, the human visual system tends to extract the salient features
from a given scene so that it can be retrieved later. To mimic this, people started
designing various feature extractors that can extract these salient points from

a given image. Some of the popular algorithms include SIFT (Scale Invariant
Feature Transform), SURF (Speeded Up Robust Features), FAST (Features from
Accelerated Segment Test), and so on. There is a module called features2d that
provides functions to detect and extract all these features. There is another module
called xfeatures2d that provides a few more feature extractors, some of which are
still in the experimental phase. You can play around with these if you get a chance.
There is also a module called bioinspired that provides algorithms for biologically
inspired Computer Vision models.

Object detection

Object detection refers to detecting the location of an object in a given image. This
process is not concerned with the type of object. If you design a chair detector, it will
just tell you the location of the chair in a given image. It will not tell you whether it's
a red chair with a high back or a blue chair with a low back. Detecting the location
of objects is a very critical step in many Computer Vision systems. Consider the
following image:

[o]

Getting Started with OpenCV

If you run a chair detector on this image, it will put a green box around all the

chairs. It won't tell you what kind of chair it is! Object detection used to be a
computationally intensive task because of the number of calculations required to
perform the detection at various scales. To solve this, Paul Viola and Michael Jones
came up with a great algorithm in their seminal paper in 2001. You can read it at
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf.
They provided a fast way to design an object detector for any object. OpenCV has
modules called objdetect and xobjdetect that provide the framework to design
an object detector. You can use it to develop detectors for random items such as
sunglasses, boots, and so on.

Machine learning

Computer Vision uses various machine learning algorithms to achieve different
things. OpenCV provides a module called m1 that has many machine learning
algorithms bundled into it. Some of the algorithms include Bayes Classifier,
K-Nearest Neighbors, Support Vector Machines, Decision Trees, Neural
Networks, and so on. It also has a module called £1ann that contains algorithms
for fast-nearest-neighbor searches in large datasets. Machine learning algorithms
are used extensively to build systems for object recognition, image classification,
face detection, visual searches, and so on.

Computational photography

Computational photography refers to using advanced image processing techniques
to improve the images captured by cameras. Instead of focusing on optical
processes and image capture methods, computational photography uses software
to manipulate visual data. Some applications include high dynamic range imaging,
panoramic images, image relighting, light field cameras, and so on.

Downloading the example code

You can download the example code files for all Packt books you have
Y purchased from your account at http: //www.packtpub. com. If you
Q purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.
Instructions for running example are available in the README . md file
present in the root folder of each project.

[10]

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

Let's take a look at the following image:

Look at those vivid colors! This is an example of a high dynamic range image and

it wouldn't be possible to get this using conventional image capture techniques.

To do this, we have to capture the same scene at multiple exposures, register those
images with each other, and then blend them nicely to create this image. The photo
and xphoto modules contain various algorithms that provide algorithms pertaining
to computational photography. There is a module called stitching that provides
algorithms to create panoramic images.

The preceding image can be found at https: //pixabay.com/en/
Lo hdr-high-dynamic-range-landscape-806260/.

[11]

https://pixabay.com/en/hdr-high-dynamic-range-landscape-806260/
https://pixabay.com/en/hdr-high-dynamic-range-landscape-806260/

Getting Started with OpenCV

Shape analysis

The notion of shape is crucial in Computer Vision. We analyze the visual data by
recognizing various different shapes in the image. This is actually an important step
in many algorithms. Let's say you are trying to identify a particular logo in an image.
Now, you know that it can appear in various shapes, orientations, sizes, and so on.
One good way to get started is to quantify the characteristics of the shape of the
object. The module shape provides all the algorithms required to extract different
shapes, measure similarities between them, transform shapes of objects, and so on.

Optical flow algorithms

Optical flow algorithms are used in videos to track features across successive frames.
Let's say you want to track a particular object in a video. Running a feature extractor
on each frame would be computationally expensive; hence, the process would

be slow. So, you just need to extract the features from the current frame and then
track these features in successive frames. Optical flow algorithms are heavily used

in video-based applications in Computer Vision. The opt £1ow module contains a
number of algorithms required to perform optical flow. There is also a module
called tracking that contains more algorithms that can be used to track features.

Face and object recognition

Face recognition refers to identifying the person in a given image. This is not the
same as face detection where you identify the location of a face in the given image.
So, if you want to build a practical biometric system that can recognize the person
in front of the camera, you first need to run the face detector that can identify the
location of the face, and then, run a face recognizer that can recognize who that
person is. There is a module called face that deals with face recognition.

As discussed earlier, Computer Vision tries to model algorithms based on how
humans perceive the visual data. So, it would be helpful to find salient regions and
objects in the images that can help different applications, such as object recognition,
object detection and tracking, and so on. There is a module called saliency that's
designed for this purpose. It provides algorithms that can detect salient regions in
static images and videos.

[12]

Chapter 1

Surface matching

We are increasingly interacting with devices that can capture the 3D structure of

the objects around us. These devices basically capture the depth information along
with the regular 2D color images. So, it's important for us to build algorithms that
can understand and process 3D objects. Kinect is a good example of a device that
captures the depth information along with the visual data. The task at hand is to
recognize the input 3D object by matching it with one of the models in our database.
If we have a system that can recognize and locate objects, then it can be used for
many different applications. There is a module called surface_matching that
contains algorithms for 3D object recognition and a pose estimation algorithm

using 3D features.

Text detection and recognition

Identifying text in a given scene and recognizing the content is becoming
increasingly important. Some applications include nameplate recognition,
recognizing road signs for self-driving cars, book scanning to digitize the contents,
and so on. There is a module called text that contains various algorithms to handle
text detection and recognition.

Installing OpenCV

Let's see how to get OpenCV up-and-running on various operating systems.

Windows

To keep things easy, let's install OpenCV using prebuilt libraries. Let's go to
http://opencv.org and download the latest version for Windows. The current
version is 3.0.0, and you can go to the OpenCV homepage to get the latest link to
download the package.

You need to make sure you have admin rights before you proceed. The downloaded
file will be an executable file, so just double-click on it to start the installation process.
The installer expands the content into a folder. You will be able to choose the
installation path and check the installation by inspecting the files.

[13]

http://opencv.org

Getting Started with OpenCV

Once you are done with the previous step, we need to set the OpenCV environment
variables and add it to the system path to complete the installation. We will set up an
environment variable that will hold the build directory of the OpenCV library. We will
be using this in our projects. Open the terminal and type the following command:

C:\> setx -m OPENCV DIR D:\OpenCV\Build\x64\vcll

We are assuming that you have a 64-bit machine with Visual Studio
. 2012 installed. If you have Visual Studio 2010, replace vc11 with
& vc10 in the preceding command. The path specified earlier is where
L= we will have our OpenCV binaries, and you will see two folders
inside this path called 1ib and bin. If you are using Visual Studio
2015, you should be able to compile OpenCV from scratch.

Let's go ahead and add the path to the bin folder of our system's path. The reason
we need to do this is because we will be using the OpenCV library in the form of
Dynamic Link Libraries (DLLs). Basically, all the OpenCV algorithms are stored
here, and our operating system will only load them during runtime. In order to do
this, our operating system needs to know where they are located. The system's PATH
variable will contain a list of all the folders where it can find the DLLs. So, naturally,
we need to add the path to the OpenCV library to this list. Now, why do we need

to do all this? Well, the other option is to copy the required DLLs to the same folder
as the application's executable file (the . exe file). This is an unnecessary overhead,
especially when we are working with many different projects.

We need to edit the PATH variable in order to add it to this folder. You can

use software such as Path Editor to do this. You can download it from
https://patheditor2.codeplex.com. Once you install it, start it and add the
following new entry (you can right-click on the path to insert a new item):

%OPENCV_DIR%\bin

Go ahead and save it to the registry. We are done!

Mac OS X

In this section, we will see how to install OpenCV on Mac OS X. Precompiled
binaries are not available for Mac OS X, so we need to compile OpenCV from
scratch. Before we proceed, we need to install CMake. If you don't have CMake
already installed, you can download it from https://cmake.org/files/v3.3/
cmake-3.3.2-Darwin-x86_64.dmg. It's a DMG file! So, once you download it,
just run the installer.

[14]

https://patheditor2.codeplex.com
https://cmake.org/files/v3.3/cmake-3.3.2-Darwin-x86_64.dmg
https://cmake.org/files/v3.3/cmake-3.3.2-Darwin-x86_64.dmg

Chapter 1

Download the latest version of OpenCV from opencv.org. The current version
is 3.0.0, and you can download it from https://github.com/Itseez/opencv/
archive/3.0.0.zip.

Unzip the contents into a folder of your choice. OpenCV 3.0.0 also has a new package
called opencv_contrib that contains user contributions that are not yet considered
stable. One thing to keep in mind is that some of the algorithms in the opencv_
contrib package are not freely available for commercial use. Also, installing this
package is optional. OpenCV will work just fine if you don't install opencv_contrib.
Since we are installing OpenCV anyway, it's good to install this package so that you
can experiment with it later on (as opposed to going through the whole installation
process again). This package is a great way to learn and play around with new
algorithms. You can download it from https://github.com/Itseez/opencv_
contrib/archive/3.0.0.zip.

Unzip the contents of the ZIP file into a folder of your choice. For convenience, unzip
it into the same folder, as mentioned earlier, so that the opencv-3.0.0 and opencv_
contrib-3.0.0 folders are in the same main folder.

We are now ready to build OpenCV. Open your terminal and navigate to the folder
where you unzipped the contents of OpenCV 3.0.0. Run the following commands
after substituting the right paths in the commands:

$ cd /full/path/to/opencv-3.0.0/
$ mkdir build
$ cd build

$ cmake -D CMAKE BUILD TYPE=RELEASE -D CMAKE_INSTALL_PREFIX:/full/path/
to/opencv-3.0.0/build -D INSTALL C EXAMPLES=ON -D BUILD EXAMPLES=ON -D
OPENCV_EXTRA MODULES PATH=/full/path/to/opencv_contrib-3.0.0/modules ../

It's time to install OpenCV 3.0.0. Go inside the /full/path/to/opencv-3.0.0/
build directory and run the following commands on your terminal:
$ make -j4

$ make install

In the preceding command, the -j4 flag indicates that it is using four cores to install
it. It's faster this way! Now, let's set the library path. Open your ~/.profile file in
your terminal using the vi ~/.profile command, and add the following line:

export DYLD LIBRARY PATH=/full/path/to/opencv-3.0.0/build/lib:$DYLD
LIBRARY PATH

[15]

https://github.com/Itseez/opencv/archive/3.0.0.zip
https://github.com/Itseez/opencv/archive/3.0.0.zip
https://github.com/Itseez/opencv_contrib/archive/3.0.0.zip
https://github.com/Itseez/opencv_contrib/archive/3.0.0.zip

Getting Started with OpenCV

We need to copy the pkg-config file opencv.pc to /usr/local/lib/pkgconfig
and name it opencv3 . pc. This way, if you already have an existing opencv 2.4.x
installation, there will be no conflicts. Let's go ahead and do this:

$ cp /full/path/to/opencv-3.0.0/build/lib/pkgconfig/opencv.pc /usr/local/
lib/pkgconfig/opencv3.pc

We need to update our PKG_CONFIG_PATH variable as well. Open your ~/.profile
file, and add the following line:

export PKG CONFIG PATH=/usr/local/lib/pkgconfig/:$PKG CONFIG_ PATH

Reload your ~/.profile file using the following command:

$ source ~/.profile

We are done! Let's see if it's working:

$ c¢d /full/path/to/opencv-3.0.0/samples/cpp

$ g++ -ggdb 'pkg-config --cflags --1libs opencv3' opencv version.cpp -o /
tmp/opencv_version && /tmp/opencv_version

If you see Welcome to OpenCV 3.0.0 printed on your terminal, you are good to
go. We will be using CMake to build our OpenCV projects throughout this book.
We will cover this in more detail in the next chapter.

Linux

Let's see how to install OpenCV on Ubuntu. We need to install some dependencies
before we begin. Let's install them using the package manager by running the
following command on your terminal:

$ sudo apt-get -y install libopencv-dev build-essential cmake
1ibdc1394-22 1ibdcl394-22-dev libjpeg-dev libpngl2-dev libtiff4-dev
libjasper-dev libavcodec-dev libavformat-dev libswscale-dev libxine-dev
libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev libtbb-
dev libgt4-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev
libtheora-dev libvorbis-dev libxvidcore-dev x264 v4l-utils

Now that you have installed the dependencies, let's download, build, and install
OpenCV:

$ wget "https://github.com/Itseez/opencv/archive/3.0.0.zip" -O opencv.zip

$ wget "https://github.com/Itseez/opencv _contrib/archive/3.0.0.zip" -0
opencv_contrib.zip

$ unzip opencv.zip -d

[16]

Chapter 1

$ unzip opencv contrib.zip -4 .
$ cd opencv-3.0.0

$ mkdir build

$ cd build

$ cmake -D CMAKE BUILD TYPE=RELEASE -D CMAKE_INSTALL_PREFIX:/full/path/
to/opencv-3.0.0/build -D INSTALL C EXAMPLES=ON -D BUILD EXAMPLES=ON -D
OPENCV_EXTRA MODULES PATH=/full/path/to/opencv _contrib-3.0.0/modules ../
$ make -j4

$ sudo make install

Let's copy the pkg-config file's opencv.pc to /usr/local/lib/pkgconfig and
name it opencv3.pc:

$ cp /full/path/to/opencv-3.0.0/build/lib/pkgconfig/opencv.pc /usr/local/
lib/pkgconfig/opencv3.pc

We are done! We will now be able to use it to compile our OpenCV programs from
the command line. Also, if you already have an existing OpenCV 2.4.x installation,
there will be no conflicts. Let's check whether the installation is working properly:

$ cd /full/path/to/opencv-3.0.0/samples/cpp

$ g++ -ggdb 'pkg-config --cflags --1libs opencv3' opencv version.cpp -o /
tmp/opencv_version && /tmp/opencv version

If you see Welcome to OpenCV 3.0.0 printed on your terminal, you are good
to go. In the following chapters, you will learn how to use CMake to build your
OpenCV projects.

Summary

In this chapter, we learned how to install OpenCV across various operating systems.
We discussed the human visual system and how humans process visual data. We
understood why it's difficult for machines to do the same and what we need to
consider while designing a Computer Vision library. We learned what can be done
using OpenCV and the various modules that can be used to do those tasks.

In the next chapter, we will discuss how to operate on images and how we can
manipulate them using various functions. We will also learn how to build a project
structure for our OpenCV applications.

[17]

An Introduction to the Basics
of OpenCV

After covering the installation of OpenCV on different operating systems in
Chapter 1, Getting Started with OpenCV, we are going to introduce the basics of
OpenCV development in this chapter.

In this chapter, you will learn how to create your project using CMake.

We will also introduce the image basic data structures, matrices, and other structures
that are required in our projects.

We will learn how to save our variables and data in files using the XML/YAML
persistence OpenCV functions.

In this chapter, we will cover the following topics:

e Configuring projects with CMake

e Reading/writing images from/to disk

¢ Reading videos and accessing camera devices

e The main image structures (matrices)

e Other important and basic structures (vectors, scalars, and so on)

¢ Anintroduction to basic matrix operations

¢ File storage operations with the XML/YAML persistence OpenCV API

[19]

An Introduction to the Basics of OpenCV

Basic CMake configuration files

To configure and check all the required dependencies of our project, we are going

to use CMake; but it is not mandatory, so we can configure our project in any other
tool or IDE such as Makefiles or Visual Studio. However, CMake is the most portable
way to configure multiplatform C++ projects.

CMake uses configuration files called cMakeLists. txt, where the compilation and
dependency processes are defined. For a basic project, based on an executable build
from one source code file, a two-line cMakeLists. txt file is all that is needed. The
file looks like this:

cmake minimum required (VERSION 2.6)
project (CMakeTest)
add_executable (${PROJECT NAME} main.cpp)

The first line defines the minimum version of CMake required. This line is
mandatory in our CMakeLists. txt file and allows you to use the cmake functionality
defined from a given version defined in the second line; it defines the project name.
This name is saved in a variable called PROJECT NAME.

The last line creates an executable command (add_executable ()) in the main.cpp
file, gives it the same name as our project ($ { PROJECT NAME }), and compiles our
source code into an executable called cMakeTest, which we set as the project name.

The ${} expression allows access to any variable defined in our environment.
Then, we can use the $ {PROJECT NAME} variable as an executable output name.

Creating a library

CMake allows you to create libraries, which are indeed used by the OpenCV build
system. Factorizing the shared code among multiple applications is a common and
useful practice in software development. In big applications or when the common

code is shared in multiple applications, this practice is very useful.

In this case, we do not create a binary executable; instead, we create a compiled file
that includes all the functions, classes, and so on, developed. We can then share this
library file with the other applications without sharing our source code.

CMake includes the add_1library function for this purpose:

Create our hello library
add_library(Hello hello.cpp hello.h)

[20]

Chapter 2

Create our application that uses our new library
add_executable (executable main.cpp)

Link our executable with the new library
target link libraries(executable Hello)

The lines starting with # add comments and are ignored by CMake.

The add library(Hello hello.cpp hello.h) command defines our new

library called, where Hello is the library name and hello.cpp, hello.h are the
source files. We add the header file to allow IDEs such as Visual Studio to link to the
header files.

This line will generate a shared file (So for OS X and Unix or .d11 for Windows)
or a static library (A for OS X and Unix or .d11 for Windows), depending on our
operating system or if it is a dynamic or static library.

target_link libraries(executable Hello) is the function that links our
executable to the desired library; in our case, it's the Hello library.

Managing dependencies

CMake has the ability to search our dependencies and external libraries, giving us
the facility to build complex projects depending on external components in our
projects and by adding some requirements.

In this book, the most important dependency is, of course, OpenCV, and we will add
it to all our projects:

cmake minimum required (VERSION 2.6)

cmake policy (SET CMP0012 NEW)

PROJECT (Chapter2)

Requires OpenCV

FIND PACKAGE (OpenCV 3.0.0 REQUIRED)

Show a message with the opencv version detected
MESSAGE ("OpenCV version : ${OpenCV_VERSION}")
include directories (${OpenCV_INCLUDE DIRS})

link directories (${OpenCV_LIB DIR})

Create a variable called SRC

SET (SRC main.cpp)

Create our executable

ADD EXECUTABLE (${PROJECT NAME} ${SRC})

Link our library

TARGET LINK LIBRARIES(${PROJECT NAME} ${OpenCV_LIBS})

[21]

An Introduction to the Basics of OpenCV

Now, let's understand the working of the script:

cmake minimum required (VERSION 2.6)
cmake policy (SET CMP0012 NEW)
PROJECT (Chapter2)

The first line defines the minimum CMake version; the second line tells CMake
to use the new behavior of CMake so that it can correctly recognize numbers and
Booleans constants without dereferencing variables with such names. This policy
was introduced in CMake 2.8.0, and CMake warns when the policy is not set to
version 3.0.2. Finally, the last line defines the project title:

Requires OpenCV

FIND PACKAGE (OpenCV 3.0.0 REQUIRED)

Show a message with the opencv version detected
MESSAGE ("OpenCV version : ${OpenCV_VERSION}")
include directories (${OpenCV_INCLUDE DIRS})

link directories (${OpenCvV_LIB DIR})

This is where we search for our OpenCV dependency. FIND PACKAGE is the function
that allows us to find our dependencies and the minimum version required if this
dependency is required or optional. In this sample script, we look for OpenCV in
version 3.0.0 or greater and it is a required package.

The FIND PACKAGE command includes all OpenCV submodules,

_ butyou can specify the submodules that you want to include in the
% project by making your application smaller and faster. For example,
L if we are going to work only with the basic OpenCV types and core

functionalities, we can use the following command:

FIND PACKAGE (OpenCV 3.0.0 REQUIRED core)

If CMake does not find it, it returns an error and does not prevent us from compiling
our application.

The MESSAGE function shows a message on the terminal or CMake GUL In our
case, we will show the OpenCV version, as follows:

OpenCV version : 3.0.0

${OpenCV_VERSION} is a variable where CMake stores the OpenCV package version.

[22]

Chapter 2

The include directories() and link directories () add the header and the
directory of the specified library to our environment. OpenCV's CMake module
saves this data in the ${Opencv_INCLUDE DIRS} and ${OpenCvV_LIB DIR} variables.
These lines are not required in all platforms, such as Linux, because these paths are
normally in the environment, but it's recommended that you have more than one
OpenCV version to choose from the correct link and include directories:

Create a variable called SRC

SET (SRC main.cpp)

Create our executable

ADD EXECUTABLE (${PROJECT NAME} ${SRC})

Link our library

TARGET_LINK LIBRARIES(${PROJECT NAME} ${OpenCV_LIBS})

This last line creates the executable and links it to the OpenCV library, as we saw in
the previous section, Creating a library.

There is a new function in this piece of code called seT. This function creates a new
variable and adds any value that we need to it. In our case, we set the SRC variable
to the main. cpp value. However, we can add more and more values to the same
variable, as shown in this script:

SET (SRC main.cpp
utils.cpp
color.cpp

Making the script more complex

In this section, we will show you a more complex script that includes subfolders,
libraries, and executables, all in only two files and a few lines, as shown in this script.

It's not mandatory to create multiple cMakeLists. txt files because we can
specify everything in the main cMakeLists. txt file. It is more common to use
different cMakeLists. txt files for each project subfolder, making it more flexible
and portable.

[23]

An Introduction to the Basics of OpenCV

This example has a code structure folder that contains one folder for the utils
library and the other for the root folder, which contains the main executable:

CMakeLists.txt

main.cpp

utils/
CMakeLists.txt
computeTime.cpp
computeTime.h
logger. cpp
logger.h
plotting.cpp
plotting.h

Then, we need to define two cMakeLists . txt files: one in the root folder
and the other in the utils folder. The cMakeLists.txt root folder file has the
following contents:

cmake minimum required (VERSION 2.6)
project (Chapter2)

Opencv Package required
FIND PACKAGE(OpenCV 3.0.0 REQUIRED)

#Add opencv header files to project
include directories(${OpenCV_INCLUDE DIR})
link directories (${OpenCvV_LIB DIR})

add_subdirectory (utils)

Add optional log with a precompiler definition
option (WITH LOG "Build with output logs and images in tmp" OFF)
if (WITH_LOG)
add_definitions (-DLOG)
endif (WITH LOG)

generate our new executable

add_executable(${PROJECT NAME} main.cpp)

link the project with his dependencies
target link libraries(${PROJECT NAME} ${OpenCV LIBS} Utils)

Almost all the lines are described in the previous sections except for some functions
that we will explain in later sections.

[24]

Chapter 2

The add_subdirectory () tells CMake to analyze the cMakeLists. txt of a
desired subfolder.

Before we continue with an explanation of the main CMakeLists. txt file, we will
explain the utils CMakeLists.txt file.

In the cMakeLists. txt file in the utils folder, we will write a new library to
include it in our main project folder:

Add new variable for src utils 1lib
SET (UTILS LIB_SRC
computeTime.cpp
logger.cpp
plotting.cpp
)
create our new utils 1lib
add_library(Utils ${UTILS_LIB SRC})
make sure the compiler can find include files for our library
target include directories(Utils PUBLIC ${CMAKE_CURRENT SOURCE DIR})

This CMake script file defines an UTILS_LIB_ SRC variable where we add all the
source files included in our library, generate the library with the add_library
function, and use the target include directories function to allow our main
project to detect all header files.

Leaving out the utils subfolder and continuing with the root cmake script, the
Option function creates a new variable —in our case, WITH_LOG, with a small
description attached. This variable can be changed via the ccmake command line or
CMake GUI interface, where the description and a checkbox appears that allow users
to enable or disable this option.

This function is very useful and allows the user to decide about compile-time
features such as enabling or disabling logs, compiling with Java or Python support
as with OpenCV, and so on.

In our case, we use this option to enable a logger in our application. To enable the
logger, we use a precompiler definition in our code:

#ifdef LOG
logi ("Number of iteration %d4d", 1i);
#endif

[25]

An Introduction to the Basics of OpenCV

To tell our compiler that we require the LoG compile time definition, we use the
add definitions (-DLOG) function in our CMakeLists.txt. To allow the user to
decide whether they want to enable it or not, we only have to verify whether the
WITH_LOG CMake variable is checked or not with a simple condition:

if (WITH_LOG)
add_definitions (-DLOG)
endif (WITH_LOG)

Now, we are ready to create our CMake script files to be compiled in any operating
system our Computer Vision projects. Then, we will continue with the OpenCV
basics before we start with a sample project.

Images and matrices

The most important structure in a Computer Vision is without any doubt the images.
The image in Computer Vision is a representation of the physical world captured
with a digital device. This picture is only a sequence of numbers stored in a matrix
format, as shown in the following image. Each number is a measurement of the light
intensity for the considered wavelength (for example, red, green, or blue in color
images) or for a wavelength range (for panchromatic devices). Each point in an
image is called a pixel (for a picture element), and each pixel can store one or more
values depending on whether it is a gray, black, or white image (called a binary
image as well) that stores only one value, such as 0 or 1, a gray-scale-level image that
can store only one value, or a color image that can store three values. These values
are usually integer numbers between 0 and 255, but you can use the other range. For
example, 0 to 1 in a floating point numbers such as HDRI (High Dynamic Range
Imaging) or thermal images.

[26]

Chapter 2

The image is stored in a matrix format, where each pixel has a position in it and can
be referenced by the number of the column and row. OpenCV uses the Mat class for
this purpose. In the case of a grayscale image, a single matrix is used, as shown in the
following figure:

.IEE 185 | 187 | 185 (1890 | 188 (188 | 193 | 187

174 | 167 | 186 184 | 185 (1896 | 204 (181 | 200 | 178

168 | 184 | 185 (188 | 185 (182 | 191 [185

178

[27]

An Introduction to the Basics of OpenCV

In the case of a color image, as shown in the following image, we use a matrix of size
width x height x number of colors:

185 | 187 185 (190 |189 [19& | 193 (197 | 184

184 | 152

Blue
Green

The Mat class is not only used to store images, but also to store different types of
arbitrarily sized matrices. You can use is it as an algebraic matrix and perform
operations with it. In the next section, we are going to describe the most important
matrix operations such as add, matrix multiplication, create a diagonal matrix,
and so on.

However, before that, it's important to know how the matrix is stored internally
in the computer memory because it is always better to have efficient access to the
memory slots instead of access to each pixel with the OpenCV functions.

[28]

Chapter 2

In memory, the matrix is saved as an array or sequence of values ordered by columns
and rows. The following table shows the sequence of pixels in the BGR image format:

Row 0 Row 1 Row 2
Col 0 Col 1 Col 2 Col 0 Col 1 Col 2 Col 0 Col 1 Col 2
Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 Pixel 9

B|G|R B|G|R B|G|R B|G|R B|G|R B|G|R B|G|R B|G|R B|G|R

With this order, we can access any pixel, as shown in the following formula:

Value= Row_i*num cols*num channels + Col i + channel i

OpenCV functions are quite optimized for random access, but sometimes
%ji\ direct access to the memory (working with pointer arithmetic) is more
g efficient— for example, when we have access to all the pixels in a loop.

Reading/writing images
After the introduction of this matrix, we are going to start with the basics of the
OpenCV code. Firstly, we need to learn how to read and write images:

#include <iostream>
#include <strings>
#include <sstream>

using namespace std;

// OpenCV includes
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"

USil’lg namespace cv;

int main(int argc, const char** argv)
{

// Read images

Mat color= imread("../lena.jpg") ;

Mat gray= imread("../lena.jpg", 0);

// Write images
imwrite ("lenaGray.jpg", gray);

[29]

An Introduction to the Basics of OpenCV

// Get same pixel with opencv function

int myRow=color.cols-1;

int myCol=color.rows-1;

Vec3b pixel= color.at<Vec3b> (myRow, myCol) ;

cout << "Pixel value (B,G,R): (" << (int)pixel[0] << "," <<
(int)pixel [1] << "," << (int)pixel[2] << ")" << endl;

// show images

imshow ("Lena BGR", color) ;
imshow ("Lena Gray", gray);
// wait for any key press
waitKey (0) ;

return O0;

}
Let's try to understand this code:

// OpenCV includes

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;

First, we have to include the declarations of the functions that we need in

our sample. These functions come from core (basic image data handling) and
high-gui (the cross-platform I/O functions provided by OpenCV are core and
highui. The first includes the basic classes, such as matrices, and the second
includes the functions to read, write, and show images with graphical interfaces).

// Read images
Mat color= imread("../lena.jpg");
Mat gray= imread("../lena.jpg", 0);

The imread is the main function used to read images. This function opens an
image and stores the image in a matrix format. The imread function accepts two
parameters: the first parameter is a string that contains the image's path, and the
second parameter is optional and, by default, loads the image as a color image.
The second parameter allows the following options:

e CV LOAD IMAGE ANYDEPTH: If set to this constant, returns a 16-bit/32-
bit image when the input has the corresponding depth; otherwise, the
imread function converts it to an 8-bit image

e CV_LOAD_IMAGE_COLOR: If set to this constant, always converts the
image to color

e CV_LOAD_ IMAGE_GRAYSCALE: If set to this constant, always converts the
image to grayscale

[30]

Chapter 2

To save images, we can use the imwrite function, which stores a matrix image in
our computer:

// Write images
imwrite ("lenaGray.jpg", gray);

The first parameter is the path where we want to save the image with the extension
format that we desire. The second parameter is the matrix image that we want to
save. In our code sample, we create and store a gray version of the image and then
save it as a JPG file the gray image that we loaded and store in gray variable:

// Get same pixel with opencv function
int myRow=color.cols-1;
int myCol=color.rows-1;

Using the . cols and . rows attributes of a matrix, we can access the number of
columns and rows of an image — or in other words, the width and height:

Vec3b pixel= color.at<Vec3b> (myRow, myCol) ;
cout << "Pixel value (B,G,R): (" << (int)pixel[0] << "," << (int)
pixel[1l] << "," << (int)pixel[2] << ")" << endl;

To access one pixel of an image, we use the cv: :Mat : :at<typename t>(row,col)
template function from the Mat OpenCV class. The template parameter is the desired
return type. A typename in an 8-bit color image is a Vec3b class that stores three
unsigned char data (Vec=vector, 3=number of components, and b =1 byte). In the case
of the gray image, we can directly use the unsigned char or any other number format
used in the image, such as uchar pixel= color.at<uchars>(myRow, myCol):

// show images

imshow ("Lena BGR", color) ;
imshow ("Lena Gray", gray);
// wait for any key press
waitKey (0) ;

Finally, to show the images, we can use the imshow function that creates a window
with a title as the first parameter and the image matrix as the second parameter.

. If we want to stop our application by waiting for the user to press a
% key, we can use the OpenCV waitKey function with a parameter set
=" to the number of milliseconds we want to wait. If we set the parameter
to 0, then the function will wait forever.

[31]

An Introduction to the Basics of OpenCV

The result of this code is shown in the following picture; the left-hand image is a
color image and right-hand image is a gray scale:

Finally, as an example for the following samples, we are going to create the
CMakeLists. txt to allow you to compile our project and also see how to compile it.

The following code describes the cMakeLists. txt file:

cmake minimum_ required (VERSION 2.6)
cmake policy (SET CMP0012 NEW)
PROJECT (project)

Requires OpenCV
FIND PACKAGE (OpenCV 3.0.0 REQUIRED)
MESSAGE ("OpenCV version : ${OpenCV_VERSION}")

include directories (${OpenCV_INCLUDE DIRS})
link directories (${OpenCV_LIB DIR})
ADD_EXECUTABLE (sample main.cpp)
TARGET LINK LIBRARIES(sample ${OpenCV LIBS})

[32]

Chapter 2

To compile our code, using the cMakeLists.txt file we have to perform the
following steps:

1. Create a build folder.

2. Inside the build folder, execute cmake or open the CMake gui app in
Windows, choose the source folder and build folder, and click on the
Configure and Generate buttons.

3. After step 2, if we are in Linux or OS, generate a makefile; then we have
to compile the project using the make command. If we are in Windows,
we have to open the project with the editor that we selected in step 2 and
compile it.

4. After step 3, we have an executable called app.

Reading videos and cameras

This section introduces you to reading a video and camera with this simple example:

#include <iostream>
#include <strings>
#include <sstreams>
using namespace std;

// OpenCV includes

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;

// OpenCV command line parser functions
// Keys accecpted by command line parser
const char* keys =
{
"{help h usage ? | | print this message}"
"{evideo | | Video file, if not defined try to use webcamera}"

int main(int argc, const char** argv)

CommandLineParser parser (argc, argv, keys);
parser.about ("Chapter 2. v1.0.0");

[33]

An Introduction to the Basics of OpenCV

//If requires help show
if (parser.has("help"))
{
parser.printMessage () ;
return O0;

}

String videoFile= parser.get<String>(0) ;

// Check if params are correctly parsed in his variables
if (!parser.check())
{

parser.printErrors () ;

return O0;

VideoCapture cap; // open the default camera
if (videoFile 1= "m)
cap.open (videoFile) ;
else
cap.open(0) ;
if (lcap.isOpened()) // check if we succeeded
return -1;

namedwWwindow ("Video", 1) ;
for(;;)
{
Mat frame;
cap >> frame; // get a new frame from camera
imshow ("Video", frame) ;
if (waitKey (30) >= 0) break;
}
// Release the camera or video cap
cap.release() ;

return O0;

[34]

Chapter 2

Before we explain how to read video or camera inputs, we need to introduce

a useful new class that will help us manage the input command line parameters;
this new class was introduced in OpenCV version 3.0 and is called the
CommandLineParser class:

// OpenCV command line parser functions
// Keys accepted by command line parser
const char* keys =
{
"{help h usage ? | | print this message}"
"{@video | | Video file, if not defined try to use webcamera}"

Vi

The first thing that we have to do for a command-line parser is define the parameters
that we need or allow in a constant char vector; each line has this pattern:

{ name param | default value | description}

The name_param can be preceded with @, which defines this parameter as a default
input. We can use more than one name_param:

CommandLineParser parser (argc, argv, keys);

The constructor will get the inputs of the main function and the key constants
defined previously:

//1f requires help show

if (parser.has("help"))

{
parser.printMessage () ;
return 0;

}

The .has class method checks the parameter's existence. In this sample, we
check whether the user has added the -help or ? parameter, and then, use the
printMessage class function to show all the description parameters:

String videoFile= parser.get<Strings>(0) ;

[35]

An Introduction to the Basics of OpenCV

With the .get<typename> (parameterName) function, we can access and read any of
the input parameters:

// Check if params are correctly parsed in his variables
if (!parser.check())
{

parser.printErrors () ;

return O;

}

After getting all the required parameters, we can check whether these parameters are
parsed correctly and show an error message if one of the parameters is not parsed.
For example, add a string instead of a number:

VideoCapture cap; // open the default camera
if (videoFile != "")
cap.open (videoFile) ;
else
cap.open(0) ;
if (!cap.isOpened()) // check if we succeeded
return -1;

The class to read a video and camera is the same. The videoCapture class belongs to
the videoio submodel instead of the highgui submodule, as in the former version
of OpenCV. After creating the object, we check whether the input command line
videoFile parameter has a path filename. If it's empty, then we try to open a web
camera and, if it has a filename, then we open the video file. To do this, we use the
open function, giving the video filename or the index camera that we want to open
as a parameter. If we have a single camera, we can use 0 as a parameter.

To check whether we can read the video filename or the camera, we use the
isOpened function:

namedWindow ("Video",1) ;
for(;;)
{

Mat frame;

cap >> frame; // get a new frame from camera

if (frame)
imshow ("Video", frame) ;

if (waitKey (30) >= 0) break;
}
// Release the camera or video cap
cap.release() ;

[36]

Chapter 2

Finally, we create a window to show the frames with the namedwindow function
and, with a non-finish loop, we grab each frame with the >> operation and show
the image with the imshow function, if we correctly retrieve the frame. In this case,
we don't want to stop the application, but we want to wait for 30 milliseconds to
check whether users want to stop the application execution with any key using
waitKey (30).

; To choose a good value to wait for the next frame, using a camera
access is calculated from the speed of the camera. For example, if a
camera works at 20 FPS, a great wait value is 40 = 1000/20.

When the user wants to finish the app, he has to only press a key, and then we have
to release all the video resources using the release function.

It is very important to release all the resources that we use in a

Computer Vision application; if we do not do it, we can consume
/= all the RAM memory. We can release the matrices with the

release function.

The result of the code is a new window that shows a video or web camera in the BGR
format, as shown in the following screenshot:

Video

[37]

An Introduction to the Basics of OpenCV

Other basic object types

We have learned about the Mat and Vec3b classes, but we need to learn about other
classes as well.

In this section, we will learn about the most basic object types required in most
of the projects:

Vec

Scalar
Point

Size

Rect
RotatedRect

The vec object type

vec is a template class that is used mainly for numerical vectors. We can define any
type of vectors and a number of components:

Vec<double, 19> myVector;

Or we can use any of the predefined types:

typedef Vec<uchar, 2> Vec2b;

typedef Vec<uchar, 3> Vec3b;

typedef Vec<uchar, 4> Vec4b;

typedef Vec<short, 2> Vec2s;

typedef Vec<short, 3> Vec3s;

typedef Vec<short, 4> Vecids;

typedef Vec<int, 2> Vec2i;

typedef Vec<int, 3> Vec3i;

typedef Vec<int, 4> Vec4i;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vecé6f;

[38]

Chapter 2

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vecéd;

All the expected vector operations are also implemented, as follows:
vl = v2 + Vv3

vl = v2 - v3

vl = v2 * scale

vl = scale * v2

vl = -v2

vl += v2 and other augmenting operations

vl == v2, vl != v2

norm(vl) (euclidean norm)

The Scalar object type

The scalar object type is a template class derived from Vec with four elements.
The scalar type is widely used in OpenCV to pass and read pixel values.

To access the values of vec and scalar, we use the [] operator.

The Point object type

Another very common class template is Point. This class defines a 2D point specified
by its x and y coordinates.

Like the Point object type, there is a Point3 template class for
s

3D point support.

Like the vec class, OpenCV defines the following Point aliases for our convenience:

typedef
typedef
typedef
typedef

Point <int> Point2i;
Point2i Point;

Point <float> Point2f;
Point <double> Point2d;

[39]

An Introduction to the Basics of OpenCV

The following operators are defined for points:

ptl = pt2 + pt3;
ptl = pt2 - pt3;
ptl = pt2 * a;
ptl = a * pt2;
ptl = pt2 / a;

%‘ ptl += pt2;

ptl -= pt2;

ptl *= a;

ptl /= a;

double value = norm(pt); // L2 norm
ptl == pt2;

ptl != pt2;

The Size object type

Another template class that is very important and used in OpenCV is the template
class used to specify the size of an image or rectangle, Size. This class adds two
members: the width and height and a useful area () function.

The Rect object type

Rect is another important template class used to define 2D rectangles by the
following parameters:

e The coordinates of the top-left corner

¢ The width and height of a rectangle

The rect template class can be used to define a ROI (region of interest) of an image.

RotatedRect object type

The last useful class is a particular rectangle called RotatedRect. This class
represents a rotated rectangle specified by a center point, the width and height
of a rectangle, and the rotation angle in degrees:

RotatedRect (const Point2f& center, const Size2f& size, float angle);

[40]

Chapter 2

An interesting function of this class is boundingBox; this function returns a Rect that
contains the rotated rectangle:

Bounding Box

Basic matrix operations

In this section, we will learn some basic and important matrix operations that we can
apply to images or any matrix data.

We learned how to load an image and store it in a Mat variable, but we can manually
create a Mat variable. The most common constructor that provides the matrix size
and type is as follows:

Mat a= Mat (Size(5,5), CV_32F);

You can create a new Matrix 1link with a stored buffer from third-party
libraries, without copying the data, using the following constructor:
i
Mat (size, type, pointer to buffer)

The supported types depend on the type of the number you want to store and the
number of channels. The most common types are as follows:

CV_sucl
Ccv_8uc3
CV_8UC4
CV_32FC1
CV_32FC3
CV_32FC4

[41]

An Introduction to the Basics of OpenCV

You can create any type of a matrix using CV_number_typeC (n),

where number type is 8U (8 bits unsigned) to 64F (64 float) and
" (n) is the number of channels. The number of channels allowed is

from 1 to CV_CN_MAX.

This initialization does not set up the data values and you can get undesirable
values. To avoid undesirable values, you can initialize the matrix with zeros or ones
values with the zeros or ones function:

Mat mz= Mat::zeros (5,5, CV_32F);
Mat mo= Mat::ones (5,5, CV_32F);

The output of the preceding matrix is as follows:

[0 0 0 0 O

PR PP
el ™
= e

[N
(=

cooo
cooo
cooo
=X=X=K=)

oo oo

A special matrix initialization is the eye function that creates an identity matrix
with the specified type (cv_suc1i, cv_sucs..) and size:

Mat m= Mat::eye(5,5, CV_32F);

The output is as follows:

OO OO
O OO0OOoO
H OOOOoO

QOO0 K
QOO rOoO

[42]

Chapter 2

All matrix operations are allowed in the OpenCV Mat class. We can add or subtract
two matrices with + and - operators:

Mat a= Mat::eye(Size(3,2), CV_32F);
Mat b= Mat::ones(Size(3,2), CV_32F);
Mat c= a+b;
Mat d= a-b;

The results of the previous operations are as follows:
[100 +[111]_[211]
010 111 [121
100]_ [111]=[0-1-1]
010 111 -1 0 -1

We can multiply a matrix by a scalar with the * operator, a matrix per element matrix
with the mul function, or a matrix by matrix multiplication with * operator:

Mat ml= Mat::eye (2,3, CV_32F);

Mat m2= Mat::ones(3,2, CV_32F);

// Scalar by matrix

cout << "\nml.*2\n" << ml*2 << endl;

// matrix per element multiplication

cout << "\n(ml+2).* (ml+3)\n" << (ml+1) .mul (ml+3) << endl;
// Matrix multiplication

cout << "\nml*m2\n" << ml*m2 << endl;

The results of the previous operations are as follows:

109, [209
010 020

21y (433 (833
1217343/ 1383
'100*:1[:{:[11]
o10/* |77

The other common mathematical matrix operations are transposition and matrix
inversion, defined by the t () and inv () functions, respectively.

[43]

An Introduction to the Basics of OpenCV

Other interesting functions that OpenCV provides us with are array operations in a
matrix; for example, count the non-zero elements. This is useful to count the pixels or
area of an object:

int countNonZero(src);

OpenCV provides some statistical functions. The mean and standard deviation by
channel can be calculated using the meanstdbev function:

meanStdDev (src, mean, stddev) ;

The other useful statistical function is minMaxLoc. This function finds the minimum
and the maximum of a matrix or array and returns its location and value:

minMaxLoc (src, minVal, maxVal, minLoc, maxLoc) ;

Here, src is the input matrix, minval and maxval are double values detected, and
minLoc and maxLoc are point values detected.

Other core and useful functions are described in detail at
i http://docs.opencv.org/modules/core/doc/core.html.

Basic data persistence and storage

Before we finish this chapter, we will explore the OpenCV functions to store

and read our data. In many applications, such as calibration or machine learning,
when we are done with the calculations, we need to save the results in order to
retrieve them in the next executions. For this purpose, OpenCV provides an
XML/YAML persistence layer.

Writing to a file storage

To write a file with some OpenCV data or other numeric data, we can use the
FileStorage class using the streaming c operator such as STL streaming;:

#include "opencv2/opencv.hpp"
using namespace cv;

int main(int, char** argv)

{

// create our writter

[44]

http://docs.opencv.org/modules/core/doc/core.html

Chapter 2

FileStorage fs("test.yml", FileStorage::WRITE) ;

// Save an int

int fps= 5;

fs << "fps" << fps;

// Create some mat sample

Mat ml= Mat::eye(2,3, CV_32F);
Mat m2= Mat::ones (3,2, CV_32F);
Mat result= (ml+1) .mul (ml+3);
// write the result

fs << "Result" << result;

// release the file
fs.release () ;

FileStorage fs2("test.yml", FileStorage

Mat r;
fs2["Result"] >> r;
std::cout << r << std::endl;

fs2.release() ;

return O0;

}

: :READ) ;

To create a file storage where we save the data, we only need to call the constructor
by giving a path filename with the desired extension format (XML or YAML) with

the second parameter set to WRITE:

FileStorage fs("test.yml", FileStorage::WRITE) ;

If we want to save the data, we only need to use the stream operator by giving an
identifier in the first stage and the matrix or value that we want to save in the later
stage. For example, to save an int, we need to write the following code:

int fps= 5;
fs << "fps" << fps;

A mat is as follows:

Mat ml= Mat::eye (2,3, CV_32F);
Mat m2= Mat::ones(3,2, CV_32F);
Mat result= (ml+1) .mul (ml+3);
// write the result

fs << "Result" << result;

[45]

An Introduction to the Basics of OpenCV

The result of the preceding code is in YAML format, which is as follows:

$YAML:1.0
fps: 5
Result: !lopencv-matrix
rows: 2
cols: 3
dt: £
data: [8., 3., 3., 3., 8., 3. 1]

Reading from a saved file previously is very similar to save functions:
#include "opencv2/opencv.hpp"

using namespace cv;

int main(int, char** argv)

FileStorage fs2("test.yml", FileStorage::READ) ;

Mat r;
fs2 ["Result"] >> r;
std::cout << r << std::endl;

fs2.release() ;

return O;

}

First, we have to open a saved file with the FileStorage constructor using the
appropriate path and FileStorage: : READ parameters:

FileStorage fs2("test.yml", FileStorage::READ) ;
To read any stored variable, we only need to use the common >> stream operator
using our FileStorage object and the identifier with the [] operator:

Mat r;
fs2["Result"] >> r;

[46]

Chapter 2

Summary

In this chapter, we learned the basics of how to access images and videos and how
they are stored in matrices.

We learned the basic matrix operations and other basic OpenCYV classes to store
pixels, vectors, and so on.

Finally, we learned how to save our data in files to allow them to be read in other
applications or executions.

In the next chapter, we will learn how to create our first application by learning the
basics of a Graphical User Interface that OpenCV gives us. We will create buttons
and sliders and introduce some image processing basics.

[47]

Learning the Graphical User
Interface and Basic Filtering

In the previous chapter, we learned the basic classes and structures of OpenCV and
the most important class called Mat.

We learned how to read and save images, videos, and the internal structure in the
memory of images.

We are ready to work now, but we need to show our results and have some basic
interaction with our images. OpenCV provides us with a few basic user interfaces to
work with and help create our applications and prototypes.

To better understand how the user interface works, we are going to create a small
application called PhotoTool at the end of this chapter. In this application, we will
learn how to use filters and color conversions.

In this chapter, we will cover the following topics:

* The basic OpenCV user interface

* The OpenCV QT interface

* Sliders and buttons

* Anadvanced user interface — OpenGL
* Color conversion

e Basic filters

[49]

Learning the Graphical User Interface and Basic Filtering

Introducing the OpenCV user interface

OpenCV has its own cross-operating system user interface that allows developers
to create their own applications without the need to learn complex libraries for the
user interface.

The OpenCV user interface is basic, but it gives Computer Vision developers the
basic functions to create and manage their software developments. All of them are
native and optimized for real-time use.

OpenCV provides two options for the user interface:

e A basic interface based on native user interfaces, such as Cocoa or Carbon
for OS X and GTK for Linux or Windows user interfaces, that are selected by
default when you compile OpenCV.

* Aslightly more advanced interface based on the QT library that is cross-
platform. You have to enable the QT option manually in CMake before you
compile OpenCV.

le » 1t $ @5 P OH

(x=430, y=264) ~ R:144 G:145 B:149

[50]

Chapter 3

A basic graphical user interface with
OpenCV

We are going to create a basic user interface with OpenCV. The OpenCV user
interface allows us to create windows, add images to it, move it, resize it, and
destroy it.

The user interface is in the OpenCV's module called highui:

#include <iostream>
#include <strings>
#include <sstream>
using namespace std;

// OpenCV includes

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;

const int CV_GUI NORMAL= 0x10;

int main(int argc, const char** argv)

{
// Read images
Mat lena= imread("../lena.jpg");
Mat photo= imread("../photo.jpg") ;

// Create windows
namedWindow ("Lena", CV_GUI_ NORMAL) ;
namedWindow ("Photo", WINDOW AUTOSIZE) ;

// Move window
moveWindow ("Lena", 10, 10);
moveWindow ("Photo", 520, 10);

// show images
imshow ("Lena", lena) ;
imshow ("Photo", photo);

// Resize window, only non autosize
resizeWindow ("Lena", 512, 512);

// wait for any key press
waitKey (0) ;

[51]

Learning the Graphical User Interface and Basic Filtering

// Destroy the windows
destroyWindow ("Lena") ;
destroyWindow ("Photo") ;

// Create 10 windows
for(int i =0; i< 10; i++)
{
ostringstream ss;
ss << "Photo " << 1i;
namedWindow (ss.str()) ;
moveWindow (ss.str (), 20%i, 20%*1i);
imshow(ss.str (), photo);

waitKey (0) ;

// Destroy all windows
destroyAllWindows () ;
return O0;

}

Let's understand the code.

The first task that we need to perform in order to enable a Graphical User Interface is
import the OpenCV's module highui:

#include "opencv2/highgui.hpp"

Now, we are prepared to create our new windows, and then we need to load some
images that are to be shown:

// Read images
Mat lena= imread("../lena.jpg");
Mat photo= imread("../photo.jpg") ;

To create the windows, we use the namedwindow function. This function has two
parameters: the first parameter is a constant string with the window's name, and
the second parameter is the flags that we require, which is optional:

namedWindow ("Lena", CV_GUI_ NORMAL) ;
namedWindow ("Photo", WINDOW AUTOSIZE) ;

In our case, we create two windows: the first window is called Lena and the second
is called Photo.

[52]

Chapter 3

By default, there are the three flags for QT and native interfaces:

e wWINDOW_NORMAL: This flag allows the user to resize the window

* WINDOW_ AUTOSIZE: If this flag is set, the window size is automatically
adjusted to fit the display image and it is not possible to resize the window

* wINDOW_OPENGL: This flag enables OpenGL support
QT has some more flags, which are as follows:

* WINDOW_FREERATIO Or WINDOW_KEEPRATIO: If set to WINDOW_FREERATIO, then
the image is adjusted with no respect to its ratio. If set to WINDOW_FREERATIO,
then the image is adjusted with respect to its ratio.

* CV_GUI_NORMAL or CV_GUI_EXPANDED: The first flag enables the basic
interface without the status bar and toolbar. The second flag enables the most
advanced graphical user interface with the status bar and toolbar.

If we compile OpenCV with QT, all the windows that we create are,

- by default, in the expanded interface, but we can use native and
% more basic interfaces by adding the CV_GUI_ NORMAL flag.
e

By default, the flags are WINDOW_AUTOSIZE, WINDOW_KEEPRATIO,
and CV_GUI_EXPANDED.

When we create multiple windows, they are superimposed one above the other, but
we can move the windows to any area of our desktop with the movewindow function:

// Move window
moveWindow ("Lena", 10, 10);
moveWindow ("Photo", 520, 10);

In our code, we move the Lena window to the left 10 pixels 10 pixels to the top; and
the pPhoto window to the left 520 pixels and 10 pixels to the top:

// show images

imshow ("Lena", 1lena) ;

imshow ("Photo", photo) ;

// Resize window, only non autosize
resizeWindow ("Lena", 512, 512);

After showing the images that we loaded previously with the imshow function,
we resize the Lena window to 512 pixels, calling the resizewindow function.
This function has three parameters: window name, width, and height.

[53]

Learning the Graphical User Interface and Basic Filtering

The specific window size is for the image area. Toolbars are not
counted. Only windows without the enabled WINDOW_AUTOSIZE
’ flag can be resized.

After waiting for a key press with the waitKey function, we will remove or delete
our windows with the destroyWindow function in which the name of the window is
the only parameter that is required:

waitKey (0) ;

// Destroy the windows
destroyWindow ("Lena") ;
destroyWindow ("Photo") ;

OpenCV has a function that is used to remove all the windows that we create in

only one call. The function is called destroyAllwindows. To show how this function
works, in our sample we create 10 windows and wait for a key press. When the

user presses any key, we destroy all the windows. Anyway, OpenCV automatically
handles the destruction of all the windows when the application is terminated, and it
is not necessary to call this function at the end of our application:

// Create 10 windows
for(int i =0; i< 10; i++)
ostringstream ss;
ss << "Photo " << 1i;
namedWindow (ss.str()) ;

moveWindow (ss.str (), 20*i, 20*1i);
imshow(ss.str (), photo);

!

waitKey (0) ;

// Destroy all windows
destroyAllWindows () ;

The result of this code can be seen in the following images in two steps. The first
image shows two windows:

[54]

Chapter 3

After pressing any key, the application continues and draws several windows by
changing their positions:

Phata 1
Photo 2

[55]

Learning the Graphical User Interface and Basic Filtering

The graphical user interface with QT

The QT user interface gives us more control and options to work with our images.
The interface is divided into three main areas:

¢ The toolbar
* The image area
e The status bar

{x=180, y=205) ~ R:217 (:109 B:135

The toolbar has the following buttons from left to right:

* Four buttons for panning
e Zoom x1
e Zoom x30 and show labels

e Zoomin

[56]

Chapter 3

* Zoom out
* Save the current image

* Show the properties windows

These options can be seen more clearly in the following screenshot:

& » ¢+ @ B P P H 9]

The image area shows an image and a contextual menu when we push the right
mouse button over the image. This area can show an overlay message at the top of
the area using the displayoOverlay function. This function accepts three parameters:
the window name, the text that we want to show, and the period in milliseconds
when the overlay text is displayed. If the time is set to 0, the text never disappears:

// Display Overlay
displayOverlay("Lena", "Overlay 5secs", 5000);

ght (CTRL+arrowRIGHT)

Panning up (CTRL+arrowUP)

[57]

Learning the Graphical User Interface and Basic Filtering

Finally, the status bar shows the bottom part of the window, the pixel value, and the
position of the coordinates in the image:

We can use the status bar to show messages, such as an overlay. The function that
can change the status bar message is displayStatusBar. This function has the same
parameters as overlay functions: the window name, the text to show, and the period
of time to show it:

Status bar S5secs

Adding slider and mouse events to our
interfaces

Mouse events and slider controls are very useful in Computer Vision and OpenCV.
Using these controls, users can interact directly with the interface and change the
properties of their input images or variables.

[58]

Chapter 3

In this section, we are going to introduce you to the concepts of adding slider and
mouse events for basic interactions. To understand this correctly, we will create a
small project, where we paint green circles in the image using the mouse events and
blur the image with the slider:

// Create a variable to save the position value in track
int blurAmount=15;

// Trackbar call back function
static void onChange (int pos, void* userInput) ;

//Mouse callback
static void onMouse(int event, int x, int y, int, void* userInput);

int main(int argc, const char** argv)

{
// Read images
Mat lena= imread("../lena.jpg");

// Create windows
namedWindow ("Lena") ;

// create a trackbark
createTrackbar ("Lena", "Lena", &blurAmount, 30, onChange, &lena);

setMouseCallback ("Lena", onMouse, &lena) ;

// Call to onChange to init
onChange (blurAmount, &lena) ;

// wait app for a key to exit
waitKey (0) ;

// Destroy the windows
destroyWindow ("Lena") ;

return O;

}

Let's understand the code!

[59]

Learning the Graphical User Interface and Basic Filtering

First, we create a variable to save the slider position, and then we need to save the
slider position for access from other functions:

// Create a variable to save the position value in track
int blurAmount=15;

Now, we define our callbacks for our slider and mouse events that are required for
the OpenCV setMouseCallbac and createTrackbar functions:

// Trackbar call back function
static void onChange (int pos, void* userInput) ;

//Mouse callback
static void onMouse(int event, int x, int y, int, void* userInput);

In the main function, we load an image and create a new window called Lena:

int main(int argc, const char** argv)

{

// Read images
Mat lena= imread("../lena.jpg");

// Create windows
namedWindow ("Lena") ;

It is time to create the slider. OpenCV has the createTrackbar function that is used
to generate a slider with the following parameters in order:

* The track bar name.

* The window name.

* Aninteger pointer to be used as a value; this parameter is optional. If the
pointer value is set, the slider gets this position during its creation.

* The maximal position on the slider.
* The callback function when the position slider changes.

e The user data to be sent to the callback. It can be used to send data to
callbacks without using global variables:

// create a trackbark
createTrackbar ("Lena", "Lena", &blurAmount, 30, onChange,
&lena) ;

[60]

Chapter 3

After creating the slider, we add the mouse events that allow you to paint circles
when the user pushes the left mouse button. OpenCV has the setMouseCallback
function. This function has three parameters, which are as follows:

* The window name where we get the mouse events
¢ The callback function to be called when there are mouse interactions

* User data refers to any data that will be sent to the callback function when it's
fired. In our example, we'll send the entire Lena image:

setMouseCallback ("Lena", onMouse, &lena);

To finalize the main function, we only need to initialize the image with the same
parameter as the slider. To perform the initialization, we only need to call the
callback function manually and wait for events before we close the windows:

// Call to onChange to init
onChange (blurAmount, &lena) ;

// wait app for a key to exit
waitKey (0) ;

// Destroy the windows
destroyWindow ("Lena") ;

The slider callback applies a basic blur filter to the image using the slider value as a
blur quantity:

// Trackbar call back function
static void onChange (int pos, void* userData)
{
if (pos <= 0)
return;
// Aux variable for result
Mat imgBlur;

// Get the pointer input image
Mat* img= (Mat*)userInput;

// Apply a blur filter
blur (*img, imgBlur, Size(pos, pos)) ;

// Show the result
imshow ("Lena", imgBlur) ;

[61]

Learning the Graphical User Interface and Basic Filtering

This function checks whether the slider value is 0 using the pos variable; in this case,
we do not apply the filter because it generates a bad execution. We cannot apply a 0
pixels blur.

After checking the slider value, we create an empty matrix called imgBlur to store
the blur result.

To retrieve the image sent via the user data in the callback function, we have to cast
the void* userData to correct the pointer Mat* image type.

Now, we have the correct variables to be applied to the blur filter. The blur function
applies a basic median filter to an input image, *img in our case, to an output image.

The last parameter is the size of a blur kernel (a kernel is a small matrix used to
calculate the means of convolution between the kernel and image) that we want to
apply. In our case, we are using a squared kernel of the pos size.

Finally, we only need to update the image interface using the imshow function.

The mouse events callback has five input parameters: the first parameter defines the
event type, the second and third parameters define the mouse position, the fourth
parameter defines the wheel movement, and the fifth parameter defines the user

input data.

The mouse event types are shown in the following table:

Event type

Description

EVENT MOUSEMOVE

When the user moves the mouse

EVENT LBUTTONDOWN

When the user pushes the left mouse button

EVENT_ RBUTTONDOWN

When the user pushes the right mouse button

EVENT MBUTTONDOWN

When the user pushes the middle mouse button

EVENT LBUTTONUP

When the user releases the left mouse button

EVENT RBUTTONUP

When the user releases the right mouse button

EVENT MBUTTONUP

When the user releases the middle mouse button

EVENT LBUTTONDBLCLK

When the user double-clicks with the left mouse button

EVENT RBUTTONDBLCLK

When the user double-clicks with the right mouse button

EVENT MBUTTONDBLCLK

When the user double-clicks with the middle mouse button

EVENTMOUSEWHEEL

When the user does a vertical scroll with the mouse wheel

EVENT MOUSEHWHEEL

When the user does a horizontal scroll with the mouse wheel

[62]

Chapter 3

In our sample, we only go to manage events that come from a left-push mouse
button, and then any other event different from EVENT LBUTTONDOWN is discarded.
After discarding other events, we get the input image, such as a slider callback, and
draw a circle in the image with the circle OpenCV function:

//Mouse callback
static void onMouse(int event, int x, int y, int, void* userInput)

{

if (event != EVENT LBUTTONDOWN)

return;

// Get the pointer input image
Mat* img= (Mat*)userInput;

// Draw circle
circle(*img, Point(x, y), 10, Scalar(0,255,0), 3);

// Call on change to get blurred image
onChange (blurAmount, img) ;

Adding buttons to a user interface

In the previous chapter, we learned how to create normal or QT interfaces and
interact with them with a mouse and slider, but we can create different types of
buttons as well.

[Buttons are only supported in QT Windows.]

The types of buttons supported are as follows:

e The push button
¢ The checkbox
* The radiobox

The buttons only appear in the control panel. The control panel is an independent
window per program, where we can attach buttons and track bars.

[63]

Learning the Graphical User Interface and Basic Filtering

To show the control panel, we can push the last toolbar button, right-click on
any part of the QT window, and select the Display properties window or the
Ctrl + P shortcut.

Let's see how to create a basic sample with buttons. The code is large, and we
will first explain the main function and later explain each callback separately to
understand each one of them:

Mat img;

bool applyGray=false;
bool applyBlur=false;
bool applySobel=false;

int main(int argc, const char** argv)

{

// Read images
img= imread("../lena.jpg");

// Create windows
namedWindow ("Lena") ;

// create Buttons
createButton ("Blur", blurCallback, NULL, QT CHECKBOX, O0);

createButton ("Gray",grayCallback, NULL,QT RADIOBOX, O0);
createButton ("RGB",bgrCallback, NULL,QT RADIOBOX, 1);

createButton ("Sobel", sobelCallback,NULL,QT PUSH BUTTON, O0) ;

// wait app for a key to exit
waitKey (0) ;

// Destroy the windows
destroyWindow ("Lena") ;

return O;

}

We are going to apply three types of blur fiters, a sobel fiter, and a color conversion

to gray. All these filters are optional and the user can choose each one of them using
the buttons that we are going to create. Then, in order to get the status of each filter,
we create three global Boolean variables:

bool applyGray=false;
bool applyBlur=false;
bool applySobel=false;

[64]

Chapter 3

In the main function after we load the image and create the window, we have to use
the createButton function to create each button.

There are three button types defined in OpenCV, which are as follows:

QT CHECKBOX
QT RADIOBOX
QT PUSH BUTTON

Each button has five parameters with the following order:

The button name

The callback function

A pointer to user variable data passed to callback
The button type

The default initialized state used for the checkbox and radiobox
button types

Then, we create a blur checkbox button, two radio buttons for color
conversion, and a push button for the Sobel filter:

// create Buttons
createButton ("Blur", blurCallback, NULL, QT CHECKBOX, O0);

createButton ("Gray",grayCallback,NULL,QT RADIOBOX, O0);
createButton ("RGB",bgrCallback,NULL,QT RADIOBOX, 1);

createButton ("Sobel", sobelCallback,NULL,QT PUSH BUTTON,
0);

This is the most important part of the main function. We are going to
explore the callback functions. Each callback changes its status variable to
call another function called applyFilters and adds the filters activated by
the input image:

void grayCallback (int state, void* userData)

{
applyGray= true;
applyFilters() ;

void bgrCallback (int state, void* userData)

{
applyGray= false;
applyFilters() ;

}

[65]

Learning the Graphical User Interface and Basic Filtering

void blurCallback (int state, void* userData)

{
applyBlur= (bool)state;
applyFilters () ;

}

void sobelCallback (int state, void* userData)

{
applySobel= !applySobel;
applyFilters () ;

}

* The applyFilters function checks the status variable for each filter:

void applyFilters () {
Mat result;
img.copyTo (result) ;
if (applyGray) {
cvtColor (result, result, COLOR_BGR2GRAY) ;

}
if (applyBlur) {
blur (result, result, Size(5,5));

}
if (applySobel) {
Sobel (result, result, Cv_8U, 1, 1);

}

imshow ("Lena", result);

}

To change the color to gray, we use the cvtColor function that accepts three
parameters: an input image, an output image, and the color conversion type.

The most useful color spaces conversions are as follows:

* RGB or BGR to gray (COLOR_RGB2GRAY, COLOR_BGR2GRAY)

* RGB or BGR to YcrCb (or YCC) (COLOR_RGB2YCrCb, COLOR_BGR2YCrCb)
* RGB or BGR to HSV (COLOR_RGB2HSV, COLOR_BGR2HSV)

* RGB or BGR to Luv (COLOR_RGB2Luv, COLOR_BGR2Luv)

* Gray to RGB or BGR (COLOR_GRAY2RGB, COLOR_GRAY2BGR)

We can see that the code is easy to memorize.

[66]

Chapter 3

Remember that OpenCV works, by default, with the BGR format,
+ and the color conversion is different for RGB and BGR, when
% converting to gray. Some developers think that gray equals
’ R+G+B/3, but the optimal gray value is called luminosity and has
the formula 0.21*R + 0.72*G + 0.07*B.

The blur filter was described in the previous section. Finally, if the applySobel
variable is true, we apply the sobel filter.

The sobel filter is an image derivatives that uses the sobel operator, commonly
used to detect edges. OpenCV allow us to generate different derivatives with
different kernel sizes, but the most common is a 3x3 kernel used to calculate the
x derivatives or y derivatives.

The most important sobel parameters are as follows:

An input image

An output image

An output image depth (CV_8U, CV_16U, CV_32F, CV_64F)
The order of the derivatives x

The order of the derivatives y

The kernel size (3 value by default)

To generate a 3x3 kernel and first x order derivatives, we have to use the
following parameters:

Sobel (input, output, CV_8U, 1, 0);
To generate the y order derivatives, we use the following parameters:

Sobel (input, output, CV_8U, 0, 1);

In our example, we use the x and y derivatives simultaneously to overwrite
the input:

Sobel (result, result, CV_8U, 1, 1);

[67]

Learning the Graphical User Interface and Basic Filtering

The output of the x and y derivatives is as shown:

f Blur Gray (s RGB Sobel I-‘_. S 4+ Vv E B L PHLY

(x=222, y=224) ~ R:0 G:0 B:0

OpenGL support

OpenCV includes OpenGL support. OpenGL is a graphical library that is integrated
in graphic cards as a standard. OpenGL allow us to draw from 2D to complex 3D
scenes.

OpenCV includes OpenGL support due to the importance of representing 3D
spaces in some tasks. To allow a window support in OpenGL, we have to set up
the WINDOW_OPENGL flag when we create the window with the namedwindow call.

The following code creates a window with OpenGL support and draws a rotated
plane that shows the web camera frames:

Mat frame;
GLfloat angle= 0.0;
GLuint texture;

[68]

Chapter 3

VideoCapture camera;
int loadTexture() {

if (frame.data==NULL) return -1;
glGenTextures (1, &texture) ;
glBindTexture (GL_TEXTURE 2D, texture);
glTexParameteri (GL_TEXTURE_ 2D,GL_TEXTURE MAG FILTER,GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE MIN FILTER,GL_LINEAR) ;
glbPixelStorei (GL UNPACK ALIGNMENT, 1);

glTexImage2D (GL_TEXTURE 2D, 0, GL RGB, frame.cols, frame.rows,O,
GL_BGR, GL_UNSIGNED BYTE, frame.data) ;

return 0;

void on_ opengl (void* param)
{
glLoadIdentity () ;
// Load frame Texture
glBindTexture (GL_TEXTURE 2D, texture);
// Rotate plane before draw
glRotatef (angle, 1.0f, 1.0f, 1.0f);
// Create the plane and set the texture coordinates
glBegin (GL_QUADS) ;

// first point and coordinate texture
glTexCoord2d (0.0,0.0) ;
glvertex2d(-1.0,-1.0);

// seccond point and coordinate texture
glTexCoord2d(1.0,0.0) ;
glvertex2d(+1.0,-1.0);

// third point and coordinate texture
glTexCoord2d(1.0,1.0) ;
glvertex2d(+1.0,+1.0) ;

// last point and coordinate texture
glTexCoord2d (0.0,1.0) ;
glvertex2d(-1.0,+1.0);

glEnd () ;

[69]

Learning the Graphical User Interface and Basic Filtering

int main(int argc, const char** argv)
{
// Open WebCam
camera.open(0) ;
if (!camera.isOpened())
return -1;

// Create new windows
namedWindow ("OpenGL Camera", WINDOW_ OPENGL) ;

// Enable texture
glEnable (GL_TEXTURE 2D) ;

setOpenGlDrawCallback ("OpenGL Camera", on_opengl) ;

while (waitKey (30) !="q") {
camera >> frame;
// Create first texture
loadTexture () ;
updateWindow ("OpenGL Camera") ;
angle =angle+4;

// Destroy the windows
destroyWindow ("OpenGL Camera") ;

return O;

}

Let's understand the code.

The first task is to create the required global variables where we store the video
capture, save the frames, control the animation angle plane, and the OpenGL texture:

Mat frame;

GLfloat angle= 0.0;
GLuint texture;
VideoCapture camera;

In our main function, we have to create the video camera capture to retrieve the
camera frames:

camera.open(0) ;
if (!camera.isOpened())
return -1;

[70]

Chapter 3

If the camera is opened correctly, then we have to create our window with OpenGL
support using the WINDOW_OPENGL flag:

// Create new windows
namedWindow ("OpenGL Camera", WINDOW_ OPENGL) ;

In our example, we want to draw the images in a plane that come from the web
camera, and then we need to enable the OpenGL textures:

// Enable texture
glEnable (GL_TEXTURE 2D) ;

Now, we are ready to draw with OpenGL in our window, but we need set up a
draw OpenGL callback such as a typical OpenGL application. OpenCV give us the
setOpenGLDrawCallback function that has two parameters: the window name and
the callback function:

setOpenGlDrawCallback ("OpenGL Camera", on_opengl) ;

With the OpenCV window and callback function defined, we need to create a loop
to load the texture and update the window content by calling the OpenGL draw
callback; finally, we need to update the angle position.

To update the window content, we use the OpenCV function update window with
the window name as the parameter:

while (waitKey (30) !="'q") {
camera >> frame;
// Create first texture
loadTexture () ;
updateWindow ("OpenGL Camera") ;
angle =angle+4;

}
We are in the loop while the user press the g key.

Before we compile our application sample, we need to define the 1oadTexture
function and our on_opengl callback draw function.

The loadTexture function converts our Mat frame to an OpenGL texture image that
is ready to be loaded and used in each callback drawing. Before we load the image as
a texture, we need to ensure that we have data in our frame matrix to check whether
the data variable object is not empty:

if (frame.data==NULL) return -1;

[71]

Learning the Graphical User Interface and Basic Filtering

If we have data in our matrix frame, then we can create the OpenGL texture binding
and set the OpenGL texture parameters as a linear interpolation:

glGenTextures (1, &texture) ;

glBindTexture (GL_TEXTURE 2D, texture);
glTexParameteri (GL_TEXTURE_ 2D,GL_TEXTURE MAG FILTER,GL_LINEAR) ;
glTexParameteri (GL_TEXTURE 2D,GL_TEXTURE MIN FILTER,GL_LINEAR) ;

Now, we need to define how the pixels are stored in our matrix and how to generate
the pixels with the OpenGL's gl TexImage2D function. It's very important to note that
OpenGL uses the RGB format and OpenCV has the BGR format by default, and we
need to set it up correctly in this function:

glPixelStorei (GL_UNPACK_ALIGNMENT, 1) ;
glTexImage2D (GL TEXTURE 2D, 0, GL_RGB, frame.cols, frame.rows,0, GL_
BGR, GL UNSIGNED BYTE, frame.data);

return O;

Now, we only need to finish drawing our plane for every callback when we call the
updateWindow in the main loop. We use the common OpenGL functions, and then
we load the identity OpenGL matrix to reset all our previous changes:

glLoadIdentity () ;
Load the frame texture into the memory:

// Load Texture
glBindTexture (GL_TEXTURE 2D, texture);

Before we draw our plane, we apply all the transformations to our scene; in our case,
we are going to rotate our plane in the (1, 1, 1) axis:

// Rotate plane
glRotatef (angle, 1.0f, 1.0f, 1.0f);

Now, we have the scene set correctly to draw our plane, so we will draw quads faces
and use glBegin (GL_QUADS) for this purpose:

// Create the plane and set the texture coordinates
glBegin (GL_QUADS) ;

[72]

Chapter 3

We draw a plane centered at the (0, 0) position with a two units of size. Then, we
have to define the texture coordinate to be used and the vertex position using the
glTextCoord2D and glVertex2D functions:

// first point and coordinate texture
glTexCoord2d (0.0,0.0) ;
glvertex2d(-1.0,-1.0);

// seccond point and coordinate texture
glTexCoord2d(1.0,0.0) ;
glvertex2d(+1.0,-1.0);

// third point and coordinate texture
glTexCoord2d(1.0,1.0) ;
glvertex2d(+1.0,+1.0) ;

// last point and coordinate texture
glTexCoord2d (0.0,1.0) ;
glvertex2d(-1.0,+1.0);

glEnd () ;

. This OpenGL code is becoming obsolete, but it is important
% to better understand the OpenCV and OpenGL integration
e—" without the complex OpenGL code. To introduce you to modern
OpenGL, read Introduction to Modern OpenGL, Pack Publishing.

We can see the result in the following image:

[73]

Learning the Graphical User Interface and Basic Filtering

Summary

In this chapter, we learned how to create different types of user interface to show
images or 3D interfaces using OpenGL. We learned how to create sliders and buttons
and draw in 3D. We learned some basic image processing filters as well.

In the next chapter, we will learn how to construct a complete photo tool application
using all that we learned using the graphical user interface. We will also learn how to
apply multiple filters to an input image.

[74]

Delving into Histograms
and Filters

In the previous chapter, we learned the basics of user interfaces in OpenCV using
QT or native libraries and how to use advanced OpenGL user interfaces. We learned
basic color conversions and filters that helped us create our first application.

In this chapter, we will cover the following topics:

Histogram and histogram equalization
Look up tables

The blur and median blur

The Gaussian Canny filter

Image color equalization

Understanding conversion between image types

After we learn the basics of OpenCV and user interfaces, we will create our first
complete application and a basic photo tool with the following functionalities
in this chapter:

Calculate and draw a histogram
Histogram equalization
The lomography camera effect

The cartoonize effect

This application will help you understand how to create a whole project from scratch
and understand the histogram concept. We will see how to equalize the histogram of
a color image and create two effects using a combination of filters and the use of look
up tables.

[75]

Delving into Histograms and Filters

Generating a CMake script file

Before we start creating our source file, we will generate the cMakeLists. txt file
that will allow us to compile our project, structure, and executable. The following
cmake script is simple and basic but enough to compile and generate the executable:

cmake minimum_required (VERSION 2.6)
cmake policy (SET CMP0012 NEW)
PROJECT (Chapter4 Phototool)

Requires OpenCV
FIND_PACKAGE(OpenCV 3.0.0 REQUIRED)

include directories (${OpenCV_INCLUDE DIRS})
link_directories (${OpenCV_LIB DIR})

ADD EXECUTABLE (${PROJECT NAME} main.cpp)
TARGET LINK LIBRARIES(${PROJECT NAME} ${OpenCV_LIBS})

Let's try to understand the script file.

The first line indicates the minimum cmake version required to generate our project,
and the second line sets the cMP0012 policy variable to allow you to identify numbers
and Boolean constants and remove the CMake warning if it is not set:

cmake minimum_required (VERSION 2.6)
cmake policy (SET CMP0012 NEW)

After these two lines, we define the project name:

PROJECT (Chapter4 Phototool)

Of course, we need to include the OpenCV library. The first thing to do is find the
library and show a message about the OpenCV library version with the MESSAGE
function:

Requires OpenCV
FIND PACKAGE (OpenCV 3.0.0 REQUIRED)
MESSAGE ("OpenCV version : ${OpenCV_VERSION}")

If the library with the minimum version 3.0 is found, then we include the headers
and library files in our project:

include directories (${OpenCV_INCLUDE DIRS})
link_directories (${OpenCV_LIB DIR})

[76]

Chapter 4

Now, we only need to add the source files that are to be compiled; in order to link
them to the OpenCV library, we use the project name variable as an executable name
and use only a single source file called main. cpp:

ADD EXECUTABLE (${PROJECT NAME} main.cpp)
TARGET LINK LIBRARIES(${PROJECT NAME} ${OpenCV_LIBS})

Creating the Graphical User Interface

Before we start with the image processing algorithms, we will create the main user
interface for our application. We will use a QT-based user interface to allow us to
create single buttons.

The application receives one input parameter to load the image to be processed,
and we will create the following four buttons:

* Show histogram

* Equalize histogram

* Lomography effect

e Cartoonize effect

We can see the four results in the following screenshot:

[77]

Delving into Histograms and Filters

Let's develop our project. First of all, we will include the required OpenCV headers.
We define an img matrix to store the input image, and create a constant string to
use the new command-line parser, which is only available in OpenCV 3.0. In this
constant, we allow only two input parameters: common help and the required
image input:

// OpenCV includes
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
// OpenCV command line parser functions
// Keys accecpted by command line parser
const char* keys =
{
"{help h usage ? | | print this message}"
"{@image | | Image to process}"

bi

The main function starts with the command-line parser variable. We then set the
instructions and print the help message. The following lines will help you set up
the help instructions for our final executable:

int main(int argc, const char** argv)

{
CommandLineParser parser (argc, argv, keys);
parser.about ("Chapter 4. PhotoTool v1.0.0");
//1f requires help show
if (parser.has("help"))

parser.printMessage () ;
return 0;

}

If the user doesn't require help, then we need to get the file path image in an imgFile
variable string and check whether all the required parameters are added to the
parser.check () function:

String imgFile= parser.get<Strings(0) ;

// Check if params are correctly parsed in his variables
if (!parser.check())
{

parser.printErrors () ;

return 0O;

[78]

Chapter 4

Now, we can read the image file with the imread function and then create the
window in which the input image will be shown later using the namedwindow
function:

// Load image to process
img= imread(imgFile) ;

// Create window
namedWindow ("Input") ;

With the image loaded and window created, we only need to create the buttons
for our interface and link them to the callback functions. Each callback function
is defined in the source code, and we will explain them later in this chapter. We
will create the buttons with the createButton function with the QT PUSH BUTTON
constant in the button style:

// Create UI buttons

createButton ("Show histogram", showHistoCallback, NULL, QT PUSH
BUTTON, O0) ;

createButton ("Equalize histogram", equalizeCallback, NULL, QT
PUSH_BUTTON, 0);

createButton ("Lomography effect", lomoCallback, NULL, QT PUSH

BUTTON, O0) ;
createButton("Cartonize effect", cartoonCallback, NULL, QT PUSH
BUTTON, O0) ;

To complete our main function, we show the input image and wait for a key press to
finish our application:

// Show image

imshow ("Input", img);
waitKey (0) ;
return 0;

Now, we only need to define the callback functions in the following sections,
and we will define and describe each one of them.

Drawing a histogram

A histogram is a statistical graphic representation of variable distribution. This
allows us to understand the density estimation and probability distribution of data.
The histogram is created by dividing the entire range of variable values into a fixed
number of intervals and then counting how many values fall into each interval.

[79]

Delving into Histograms and Filters

If we apply this histogram concept to an image, it seems to be complex to
understand, but it is really very simple. In a gray image, our variable values can
take any possible gray value ranging from o to 255, and the density is the number
of pixels in the image that have this value. This means that we have to count the
number of image pixels that have the value 0, count the number of pixels of value 1,
and so on.

The callback function that shows the histogram of the input image is called
showHistoCallback. This function calculates the histogram of each channel
image and shows the result of each histogram channel in a new image.

Now, let's check the following code:

void showHistoCallback (int state, void* userData)
{

// Separate image in BRG

vector<Mat> bgr;

split (img, bgr);

// Create the histogram for 256 bins
// The number of possibles values [0..255]
int numbins= 256;

/// Set the ranges (for B,G,R)), last is not included
float rangel[] = { 0, 256 } ;
const float* histRange = { range };

Mat b _hist, g hist, r hist;

calcHist (&bgr[0], 1, 0, Mat(), b_hist, 1, &numbins,
&histRange) ;

calcHist (&bgr[1], 1, 0, Mat(), g _hist, 1, &numbins,
&histRange) ;

calcHist (&bgr(2], 1, 0, Mat(), r_hist, 1, &numbins,
&histRange) ;

// Draw the histogram

// We go to draw lines for each channel

int width= 512;

int height= 300;

// Create image with gray base

Mat histImage(height, width, CV_8UC3, Scalar(20,20,20));

[80]

Chapter 4

// Normalize the histograms to height of image

normalize (b _hist, b hist, 0, height, NORM MINMAX) ;
normalize(g hist, g hist, 0, height, NORM MINMAX) ;
normalize(r hist, r hist, 0, height, NORM MINMAX) ;

int binStep= cvRound((float)width/ (float)numbins) ;
for(int i=1; i< numbins; i++)
{
line(histImage,
Point (binStep*(i-1), height-cvRound (b hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound (b hist.at<float>(i))),
Scalar(255,0,0)) ;
line(histImage,
Point (binStep*(i-1), height-cvRound(g hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound(g hist.at<float>(i))),
Scalar(0,255,0)) ;
line(histImage,
Point (binStep*(i-1), height-cvRound(r hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound(r hist.at<float>(i))),
Scalar(0,0,255)) ;
}

imshow ("Histogram", histImage) ;

}

Let's try to understand how to extract each channel histogram and how to draw it.

First, we need to create three matrices to process each input image channel. We use
a vector type variable to store each one, and use the split opencv function to divide
the input image into three channels:

// Separate image in BRG
vector<Mat> bgr;
split(img, bgr);

Now, we will define the number of bins in our histogram; in our case, one bin per
possible pixel value:

int numbins= 256;

Now, we need to define our range of variables and create three matrices to store
each histogram:

/// Set the ranges (for B,G,R))
float rangel] = { 0, 256 } ;

const float* histRange = { range };
Mat b _hist, g hist, r hist;

[81]

Delving into Histograms and Filters

Now, we can calculate the histogram using the OpenCV calcHist function.
This function has several parameters, which are as follows:

* The input image; in our case, we use one image channel stored in the
bgr vector

* The number of images required to calculate the histogram in the input; in our
case, we only use one image

* The dimensions of the number channel used to compute the histogram;
we use 0 in our case

* The optional mask matrix
* The variable used to store the calculated histogram

* The histogram dimensionality (the dimension of the space where the image
(here, it's a gray plane) takes its values); in our case, it's 1

* The number of bins to be calculated; in our case, we use 256 bins, one per
pixel value

* The range of the input variable; in our case, it's a range of possible pixel
values from 0 to 255

Our calcHist function for each channel looks like the following code:

calcHist (&bgr[0], 1, 0, Mat(), b hist, 1, &numbins, &histRange);
calcHist (&bgr[1], 1, 0, Mat(), g hist, 1, &numbins,
&histRange) ;
calcHist (&bgr[2], 1, 0, Mat(), r hist, 1, &numbins,
&histRange) ;

Now, we have calculated the histogram for each channel. We need to draw each
channel histogram and show it to the user. To do this, we will create a color image
with a size of 512 x 300 pixels:

// Draw the histogram
// We go to draw lines for each channel
int width= 512;
int height= 300;
// Create image with gray base
Mat histImage(height, width, CV_8UC3, Scalar(20,20,20));

[82]

Chapter 4

Before we draw the histogram values in our image, we will normalize the histogram
matrices between the min value 0 and a max value; in our case, the same value as that
of the height of our image, 300 pixels:

// Normalize the histograms to height of image

normalize (b _hist, b _hist, 0, height, NORM MINMAX) ;
normalize(g hist, g hist, 0, height, NORM MINMAX) ;
normalize(r _hist, r hist, 0, height, NORM MINMAX) ;

Now, we need to draw a line from bin 0 to bin 1 and so on. We need to calculate the
number of pixels between each bin, and then a binStep variable is calculated by
dividing the width by the number of bins.

Each small line is drawn from the horizontal position, i-1 to i, and the vertical
position is the histogram value in the corresponding i. It is drawn with the color
channel representation, which is as follows:

int binStep= cvRound((float)width/ (float)numbins) ;
for(int i=1; i< numbins; i++)
{
line(histImage,
Point (binStep*(i-1), height-cvRound(b hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound (b hist.at<float>(i))),
Scalar(255,0,0)) ;
line(histImage,
Point (binStep*(i-1), height-cvRound(g hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound(g hist.at<float>(i))),
Scalar(0,255,0)) ;
line(histImage,
Point (binStep*(i-1), height-cvRound(r hist.at<float>(i-1))),
Point (binStep* (i), height-cvRound(r hist.at<float>(i))),
Scalar(0,0,255)) ;

}
Finally, we show the histogram image with the imshow function:

imshow ("Histogram", histImage) ;

[83]

Delving into Histograms and Filters

This is the result of the lena.png image:

Image color equalization

In this section, we will learn how to equalize a color image. Image equalization

and histogram equalization try to obtain a histogram with a uniform distribution
of values. The result of equalization is an increase in the contrast of an image. The
equalization allows lower local contrast areas to gain higher contrast, spreading out
the most frequent intensities.

This method is very useful when the image is almost dark or completely bright and
there are very small differences between the background and foreground. Using
histogram equalization, we increase the contrast and the details that are over- or
under-exposed. This technique is very useful in medical images, such as X-rays.

However, there are two main disadvantages to this method: it increases the
background noise and decreases useful signals.

We can see the effect of equalization in the following image and see how the
histogram changes and spreads on increasing the image contrast:

[84]

Chapter 4

N

ll | I £ |
Y “\ﬂ s

Let's try to implement our histogram equalization. We will implement it in the
callback function defined in the user interface's code:

void equalizeCallback (int state, void* userData)
{

Mat result;

// Convert BGR image to YCbCr

Mat ycrcb;

cvtColor(img, ycrcb, COLOR_BGR2YCrCb) ;

// Split image into channels
vector<Mat> channels;
split (ycrcb, channels);

// Equalize the Y channel only
equalizeHist (channels[0], channels[0]);

// Merge the result channels
merge (channels, ycrcb);

// Convert color ycrcb to BGR
cvtColor(ycrcb, result, COLOR_YCrCb2BGR) ;

// Show image
imshow ("Equalized", result);

[85]

Delving into Histograms and Filters

To equalize a color image, we only need to equalize the luminance channel. We
can do this with each color channel, but the result is not usable. Then, we can use
any other color image format, such as HSV or YCrCb, that separates the luminance
component in an individual channel. We choose this last color format and usea Y
channel (luminance) to equalize it. Then, we perform the following steps:

1.

We convert our input BGR image into YCrCb using the cvtcolor function:

Mat result;
// Convert BGR image to YCbCr
Mat ycrcb;
cvtColor(img, ycrcb, COLOR_BGR2YCrCb) ;

After converting our image, we split the YCrCb image into different
channels matrices:
// Split image into channels

vector<Mat> channels;

split (ycrcb, channels);

We then equalize the histogram only in the ¥ channel using the
equalizeHist function, which has only two parameters: input and
output matrices:

// Equalize the Y channel only
equalizeHist (channels[0], channels[0]);

Now, we only need to merge the resulted channels and convert the result to
the BGR format to show the user the result:

// Merge the result channels
merge (channels, ycrcb);

// Convert color ycrcb to BGR
cvtColor(ycrcb, result, COLOR_YCrCb2BGR) ;

// Show image
imshow ("Equalized", result);

[86]

Chapter 4

The process applied to a low contrast Lena image will have the
following result:

(%=3, y=76) ~ R:233 G:197 B:185

Lomography effect

In this section, we will create another image effect, a photographic effect that is
commonly used in different mobile applications, such as Google Camera
or Instagram.

In this section, we will discover how to use a Look up Table or LUT. We will discuss
LUTs later in this chapter.

We will learn how to add an over image; in this case, a dark halo to create our
desired effect.

[87]

Delving into Histograms and Filters

The function that implements this effect is the callback 1lomocallback and has the
following code:

void lomoCallback (int state, wvoid* userData)

{

Mat result;

const double exponential e = std::exp(1.0);
// Create Lookup table for color curve effect
Mat lut (1, 256, CV_8UC1);
for (int 1=0; 1i<256; i++)
{
float x= (float)i/256.0;
lut.at<uchar>(i)= cvRound(256 * (1/(1 + pow(exponential e,
-((x-0.5)/0.1)))));
}

// Split the image channels and apply curve transform only to red
channel

vector<Mat> bgr;

split (img, bgr) ;

LUT (bgr[2], lut, bgr[2]);
// merge result

merge (bgr, result);

// Create image for halo dark

Mat halo(img.rows, img.cols, CV_32FC3, Scalar(0.3,0.3,0.3));

// Create circle

circle (halo, Point(img.cols/2, img.rows/2), img.cols/3,
Scalar(1,1,1), -1);

blur (halo, halo, Size(img.cols/3, img.cols/3));

// Convert the result to float to allow multiply by 1 factor
Mat resultf;

result.convertTo (resultf, CV_32FC3);

// Multiply our result with halo
multiply (resultf, halo, resultf);

// convert to 8 bits
resultf.convertTo (result, CV_8UC3);

// show result
imshow ("Lomograpy", result);

}

Let's understand the code.

[88]

Chapter 4

The lomography effect is divided into different steps, but in our example we applied
a very simple lomography effect using the following two steps:

1. A color manipulation with a look up table that applies a curve to the
red channel

2. A vintage effect that applies a dark halo to the image.

The first step is to manipulate the red color with a curve transform that applies
this function:

1

_x—0.5
l4+e =

This formula generates a curve that makes the dark values darker and light values
lighter, where x is the possible pixel value (0 to 255) and s is a constant that we set
to 0.1 in our tutorial. A lower constant value that generates pixels with values lower
than 128 is very dark and over 128 is very bright. Values that are near to 1 convert
the curve to a line and do not generate our desired effect:

1 T = T PE————
-
‘/’
,/ - -
Ve —~
p ' ~
08 - ! / - .
/ e
! e
/
| /’ 7
0.6~ - 7 .
WSS
7
S /'
0.4 |- Co .
s/
~ / i
7 ‘ I
e ,/ |
0.2 - / 7 ! =
—~ . '
— %
- ~
— /’ 5=0.1 —
. =02 —
| _ . — - f| | | 320.01
°0 0.2 0.4 0.5 0.8 1

[89]

Delving into Histograms and Filters

This function is very easy to implement by applying a Look Up Table, more
commonly called a LUT. A LUT is a vector or table that returns a preprocess value
for a given value to perform computation in the memory. A LUT is a common
technique used to spare CPU cycles by avoiding performing costly computations
repeatedly. Instead of calling the exponential/divide function for each pixel, we
perform it only once for each possible pixel value (256 times) and store the result

in a table. Thus, we save the CPU time at the cost of a bit of memory. While this
may not make a great difference for the standard PC with small image sizes, this
makes a huge difference for CPU-limited hardware, such as the Raspberry Pi. In our
case, if we want to apply our function for each pixel, we need to make the width by
calculating the height; in 100 x 100 pixels, there are 10,000 calculations, but there are
only 256 possible values for a pixel. We can then precalculate the pixel values and
save them in a LUT vector.

In our sample code, we define the E variable and create a 1ut matrix of 1 row and 256
columns. Then, we do a loop over all possible pixel values by applying our formula
and saving them in the lut variable:

const double exponential e = std::exp(1.0);
// Create Lookup table for color curve effect
Mat lut (1, 256, CV_8UC1) ;
Uchar* plut= lut.data;
for (int 1=0; 1i<256; i++)
{
double x= (double)i/256.0;
plut[il= cvRound(256.0 * (1.0/(1.0 + pow(exponential e, -
((x-0.5)/0.1)))));

}

As mentioned earlier, in this section we don't apply the function to all channels.
We need to split our input image by channels using the split function:

// Split the image channels and apply curve transform only to red
channel

vector<Mat> bgr;
split (img, bgr) ;

We then apply our lut table variable to the red channel. OpenCV give us the LUT
function that has the following three parameters:

* Aninputimage

* A matrix of a look up table

* Anoutput image

[90]

Chapter 4

Then, our call to the LUT function and red channels looks like this:
LUT (bgr [2], lut, bgr([2]);
Now, we only have to merge our computed channels:

// merge result
merge (bgr, result);

The first step is done, and we only have to create the dark halo to finish our
effect. Then, we create a gray image with a white circle inside with the same
input image size:

// Create image for halo dark
Mat halo(img.rows, img.cols, CV_32FC3, Scalar(0.3,0.3,0.3));
// Create circle
circle (halo, Point(img.cols/2, img.rows/2), img.cols/3,
Scalar(1,1,1), -1);

However, if we apply this image to our input image, it will change from dark to
white, and we can then apply a big blur using the blur filter function to our circle
halo image to get a smooth effect:

blur (halo, halo, Size(img.cols/3, img.cols/3));

[91]

Delving into Histograms and Filters

The result after applying the blur filter is shown in the following image:

Now, we need to apply this halo to our image from step 1. An easy way to do this is
to multiply both the images. But we need to convert our input image from an 8-bit
image to a 32-bit float because we need to multiply our blurred image that has values
ranging from 0 to 1 by our input image that has integer values:

// Convert the result to float to allow multiply by 1 factor
Mat resultf;
result.convertTo (resultf, CV_32FC3);

After we convert our image, we only need to multiply each matrix per element:

// Multiply our result with halo
multiply (resultf, halo, resultf);

Finally, we convert the float image matrix result to an 8-bit image and show
the result:

// convert to 8 bits
resultf.convertTo (result, CV_8UC3);

// show result
imshow ("Lomograpy", result);

[92]

Chapter 4

- + 4 @FPLLH

=% + $ @B PLLHTI

(=144, y=1) ~ R:207 G:103 B:102 (x=67, y=150) ~ R:67 G:15 B:24

The cartoonize effect

In the last section of this chapter, we create another effect called cartoonize. The
purpose of this effect is to create an image that looks like a cartoon. To do this,
we divide the algorithm into two steps: edge detection and color filtering.

The cartooncallback functions define this effect with the following code:

void cartoonCallback (int state, void* userData)
{
/** EDGES **/
// Bpply median filter to remove possible noise
Mat imgMedian;
medianBlur (img, imgMedian, 7);

// Detect edges with canny
Mat imgCanny;
Canny (imgMedian, imgCanny, 50, 150);

// Dilate the edges
Mat kernel= getStructuringElement (MORPH RECT, Size(2,2));
dilate (imgCanny, imgCanny, kernel) ;

[93]

Delving into Histograms and Filters

// Scale edges values to 1 and invert values
imgCanny= imgCanny/255;
imgCanny= 1l-imgCanny;

// Use float values to allow multiply between 0 and 1
Mat imgCannyf;
imgCanny.convertTo (imgCannyf, CV_32FC3);

// Blur the edgest to do smooth effect
blur (imgCannyf, imgCannyf, Size(5,5));

/** COLOR **/

// RApply bilateral filter to homogenizes color
Mat imgBF;

bilateralFilter (img, imgBF, 9, 150.0, 150.0);

// truncate colors
Mat result= imgBF/25;
result= result*25;

/** MERGES COLOR + EDGES **/

// Create a 3 channles for edges

Mat imgCanny3c;

Mat cannyChannels[]={ imgCannyf, imgCannyf, imgCannyf};
merge (cannyChannels, 3, imgCanny3c) ;

// Convert color result to float
Mat resultf;
result.convertTo (resultf, CV_32FC3);

// Multiply color and edges matrices
multiply (resultf, imgCanny3c, resultf);

// convert to 8 bits color
resultf.convertTo (result, CV_8UC3);

// Show image
imshow ("Result", result);

}
Let's try to understand the code.

[94]

Chapter 4

The first step is to detect the most important edges of the image. We need to remove
noise from the input image before we detect the edges. There are several ways

and methods to do this. We will use a median filter to remove any possible small
noise, but we can use other methods such as Gaussian blur and so on. The OpenCV
function is called medianBlur and accepts three parameters: an input image, an
output image, and the kernel size (a kernel is a small matrix used to apply some
mathematical operation such as convolutional to an image).

Mat imgMedian;
medianBlur (img, imgMedian, 7);

After removing any possible noise, we detect the strong edges with a canny filter:

// Detect edges with canny
Mat imgCanny;
Canny (imgMedian, imgCanny, 50, 150);

The canny filter accepts the following parameters:

* Aninputimage

* Anoutput image

* The first threshold

* The second threshold

* The Sobel size aperture

* The Boolean value to check whether to use a more accurate image

gradient magnitude

The smallest value between the first and second threshold is used for edge linking.
The largest value is used to find initial segments of strong edges. The solbel size
aperture is the kernel size of the sobel filter that will be used in the algorithm.

After detecting the edges, we will apply a small dilation to join the broken edges:

// Dilate the edges
Mat kernel= getStructuringElement (MORPH RECT, Size(2,2));
dilate (imgCanny, imgCanny, kernel) ;

Similar to what we did in the Lomography effect, we need to multiply our edges'
result image by the color image. Then, we require a pixel value between 0 and 1,
and so we divide the canny result by 256 and invert the edges to black:

// Scale edges values to 1 and invert values
imgCanny= imgCanny/255;
imgCanny= 1-imgCanny;

[95]

Delving into Histograms and Filters

Transform the Canny 8 unsigned bit format to a float matrix:

// Use float values to allow multiply between 0 and 1
Mat imgCannyf;
imgCanny.convertTo (imgCannyf, CV_32FC3);

To give a cool result, we can blur the edges to give a smooth result line, and then we
apply a blur filter:

// Blur the edgest to do smooth effect
blur (imgCannyf, imgCannyf, Size(5,5));

The first step of the algorithm is complete, and now we will work with the color.

To get a cartoon look and feel, we will use the bilateral filter:

// BApply bilateral filter to homogenizes color
Mat imgBF;
bilateralFilter (img, imgBF, 9, 150.0, 150.0);

A bilateral filter is a filter used to reduce the noise of an image while keeping
edges, but we can get a cartoonish effect with appropriate parameters that we
will explore later.

The bilateral filter parameters are as follows:

* Aninputimage

* An output image

* The diameter of a pixel neighborhood; if it's set to negative, it is computed
from a sigma space value

* A sigma color value

* A sigma coordinate space

With a diameter greater than 5, the bilateral filter becomes slow.
= With sigma values greater than 150, a cartoonish effect appears.

To create a stronger cartoonish effect, we truncate the possible color values to 10 by
dividing and multiplying the pixel values. For other values, and to better understand
the sigma parameters, read the OpenCV documentation:

// truncate colors
Mat result= imgBF/25;
result= result*25;

[96]

Chapter 4

Finally, we need to merge the color and edges' results. Then, we need to create a
3-channel image from the first step:

// Create a 3 channles for edges
Mat imgCanny3c;
Mat cannyChannels[]={ imgCannyf, imgCannyf, imgCannyf};
merge (cannyChannels, 3, imgCanny3c) ;

Then, we convert our color result image to a 32 float image and then multiply both
the images per element:

// Convert color result to float
Mat resultf;
result.convertTo (resultf, CV_32FC3);

// Multiply color and edges matrices
multiply (resultf, imgCanny3c, resultf);

Finally, we only need to convert our image to an 8-bit image and show the resulting
image to the user:

// convert to 8 bits color
resultf.convertTo (result, CV_8UC3);

// Show image
imshow ("Result", result) ;

In the following image, we can see the input image (the left-hand side image) and the
result after applying the cartoonize effect (the right-hand side image):

(x=144, y=1) ~ R:207 G:103 B:102 (%x=293, y=23) ~ R:200 G:100 B:100

[97]

Delving into Histograms and Filters

Summary

In this chapter, we learned how to create a complete project that manipulates images
after applying different effects. We also split a color image in multiple matrices in
order to apply effects to only one channel. We learned how to create look up tables,
merge multiple matrices in one, use a canny and bilateral filter, draw circles, and
multiply images to perform halo effects.

In the next chapter, we will learn how to do object inspection and how to segment an
image in different parts and detect it.

[98]

Automated Optical
Inspection, Object

Segmentation, and Detection

In the previous chapter, we learned about histograms and filters that allowed us to
understand image manipulation and create a photo application.

In this chapter, we will introduce you to the basic concepts of object segmentation
and detection, which means isolation the objects that appear in an image for future
processing and analysis.

In this chapter, we will cover the following topics:

Noise removal

The basics of light/background removal

The thresholding operation

A connected component for object segmentation

Finding contours for object segmentation

The industry sector uses complex Computer Vision systems and hardware.
Computer Vision tries to detect the problems and minimizes errors produced
in the production process and increases the quality of final products.

[99]

Automated Optical Inspection, Object Segmentation, and Detection

In this sector, the name for Computer Vision tasks is Automated Optical Inspection
or AOI. This name appears in the inspection of printed circuit board manufacturers,
where one or more cameras scan each circuit to detect critical failures and quality
defects. This nomenclature was used by other manufacturers to use optical camera
systems and Computer Vision algorithms to increase the product quality. Nowadays,
the use of optical inspection using different camera types such as infrared, 3D
cameras, and so on depends on the problem requirements, such as measure objects,
detect surface effects, and so on; and complex algorithms are used in thousands of
industries for different purposes, such as defects detection, recognition, classification,
and so on.

Isolating objects in a scene

In this section, we will introduce you to the first step of any AOI algorithm, that is,
isolating different parts or objects in a scene.

We will take the example of object detection and classification of three object types:
a screw, a packing ring, and a nut and develop these in this chapter and Chapter 6,
Learning Object Classification.

Let's say we are in a company that produces these three objects. All of them are in
the same carrier tape, and our objective is to detect each object in the carrier tape and
classify each one to allow a robot to put each object on the correct shelf:

[100]

Chapter 5

In this chapter, we will isolate each object and detect its position in the image in
pixels. In the next chapter, we will classify each isolated object to check whether
it is a nut, a screw, or a packing ring.

In the following image, we show our desired result where there are a few objects
in the left-hand side image, and in the right-hand side image, we draw each one
in different colors. We can show different features such as the area, height, width,
countour size, and so on.

To achieve this result, we will follow different steps that allow us to better
understand and organize our algorithm, as shown in the following diagram:

Chapter &5 Chapter @

Pre-process

v

Feature Extraction
v

Segmentation

v

Machine Learning
Classification

v

Post-process

[101]

Automated Optical Inspection, Object Segmentation, and Detection

Our application is divided into two chapters. In this chapter, we will develop and
understand the preprocessing and segmentation steps. In Chapter 6, Learning Object
Classification, we will extract the characteristics of each segmented object and train
our machine learning system/algorithm to identify each object class to allow you to
classify our objects.

Our preprocessing steps are divided into three more substeps, which are as follows:

¢ Noise removal
* Lighting removal
e Binarization

In the segmentation step, we will use two different algorithms, which are as follows:

* The contour detection algorithm
* The connected component extraction (labeling)

We can see these substeps in the following diagram along with the application flow:

-
Moise Removal
¥
L i "y
Pre-process - Light Remaowal
i L. i
¥
s N
Binarization
LS o
—_
¥ ¥ J‘
s "y
) Connected)
Segmentation - components Find Contours
i "y
o

Now, it's time to start the preprocessing step to get the best binarization image
by removing the noise and lighting effects in order to minimize the possible
detection errors.

[102]

Chapter 5

Creating an application for AOI

To create our new application, we require a few input parameters when the user
executes them; all of them are optional, excluding the input image to be processed:

* Aninput image to be processed
* The light image pattern

* The light operation, where the user can choose between difference or
division operations:

° If the input value of the user is set to 0, then a difference operation
is applied

° If the input value of the user is set to 1, then a division operation
is applied

* Segmentation, where the user can choose between connected components
with or without statistics and findContours methods:

° If the input value of the user is set to 1, then the connected
components method for the segment is applied

° If the input value of the user is set to 2, then the connected
components with the statistics area is applied

° If the input value of the user is set to 3, then the findContours
method is applied to the segmentation

To enable this user selection, we will use the command line parser class with
these keys:

// OpenCV command line parser functions
// Keys accecpted by command line parser
const char* keys =

{

"{help h usage ? | | print this message}"
"{@image || Image to process}"
"{@lightPattern || Image light pattern to apply to image input}"

"{lightMethod | 1 | Method to remove background light, 0
difference, 1 div }"

"{segMethod | 1 | Method to segment: 1 connected Components, 2
connected components with stats, 3 find Contours }"

bi

[103]

Automated Optical Inspection, Object Segmentation, and Detection

We use the command line parser class that checks the parameters in the
main function:

int main(int argc, const char** argv)

{
CommandLineParser parser (argc, argv, keys);
parser.about ("Chapter 5. PhotoTool v1.0.0");
//1f requires help show
if (parser.has("help"))

parser.printMessage () ;
return 0;

String img file= parser.get<Strings>(0);

String light pattern file= parser.get<String>(1);
int method light= parser.get<ints>("lightMethod") ;
int method seg= parser.get<ints>("segMethod") ;

// Check if params are correctly parsed in his variables
if (!parser.check())

parser.printErrors () ;
return 0;

}

After parser class our command line user data, we check whether the input image is
correctly loaded, and then we load the image and check whether it has data:

// Load image to process
Mat img= imread(img file, 0);
if(img.data::NULL){
cout << "Error loading image "<< img file << endl;
return 0;

}

Now, we are ready to create our AOI process of segmentation. We will start with the
preprocessing task.

Preprocessing the input image
This section introduces you to some of the most common techniques that can be
applied to preprocess images in the context of object segmentation/detection. The

preprocess is the first change that we make in a new image before we start with our
work and extract the information that we require from it.

[104]

Chapter 5

Normally, in the preprocessing step, we try to minimize the image noise, light
conditions, or image deformations due to the camera lens. These steps minimize
the errors when you try to detect objects or segment our image.

Noise removal

If we don't remove the noise, we can detect more objects than we expect because
normally noise is represented as a small point in the image and can be segmented as
an object. The sensor and scanner circuit normally produce this noise. This variation
of brightness or color can be represented in different types, such as Gaussian noise,
spike noise, and shot noise. There are different techniques that can be used to remove
the noise. We will use a smooth operation, but depending of the type on the noise,
we will use some that are better than others. For example, a median filter is normally
used to remove the salt-pepper noise:

Input without noise

@ B P P H

(x=88, y=4) ~ L:118

Input without noise with box smooth

[105]

Automated Optical Inspection, Object Segmentation, and Detection

The left-hand side image is the original input with a salt-pepper noise. If we

apply a median blur, we get an awesome result where we lose small details. For
example, the borders of a screw for which we maintain the perfect edges. Refer to the
top-right figure. If we apply a box filter or a Gaussian filter, the noise if not removed.
It is just smoothed and the details of objects are loosed and smoothed as well. Refer
to the bottom-right figure.

OpenCV provides us with the medianBlur function that requires the following
three parameters:

* Aninputimage with a 1, 3, or 4 channel image. When the kernel size is
greater than 5, the image depth can only be cv_su.

* An output image,which is the resulting image, that has the same type and
depth as that of the input.

* The kernel size that has the aperture size greater than 1 and an odd value.
For example, 3, 5, 7.

This piece of code used to remove the noise looks like this:

Mat img noise;
medianBlur (img, img noise, 3);

Removing the background using the light
pattern for segmentation

In this section, we will develop a basic algorithm that enables us to remove the
background using a light pattern. This preprocessing gives us better segmentation.
Refer to the following figures. The top-left figure is the input image without noise,
and the top-right figure is the result of applying a thresholding operation; we can
see the top artifact. The bottom-left figure is the input image after the removal of the
background, the bottom-right figure is the thresholding result where there are no
artifacts in it and it's better to segment it.

[106]

Chapter 5

(x=168, y=15) ~

o\ O
o

(x=279, y=3) ~

(x=3, y=54) ~

(x=43, y=136) ~

How can we remove the light from our image? It is very simple; we only need

a picture of our scenario without any object that is taken from exactly the same
position from where the other images have been taken, and to have the same light
conditions. This is a very common technique in AOI because the external
conditions are supervised and known. The image result of our case is similar
to the following figure:

[107]

Automated Optical Inspection, Object Segmentation, and Detection

Then, with a simple mathematical operation, we can remove this light pattern.
There are two options to remove it, which are as follows:

¢ Difference
e Division

The difference images are the simplest approach. If we have the light pattern L and
the image picture I, the removal R result is the difference between them:

R= L-I

This division is a bit more complex but simple at the same time. If we have the light
pattern matrix L and the image picture matrix I, the removal R result is as follows:

R= 255*%(1-(I/L))

In this case, we divide the image by the light pattern. We make the assumption that
if our light pattern is white and the objects are darker than the background carrier
tape, then the image pixel values will always remain the same or will be lower than
the light pixel values. Then, the result that we obtain from I/L is between 0 and 1.
Finally, we invert the result of this division to get the same color direction range and
multiply it by 255 to get values between the 0-255 range.

In our code, we will create a new function called removeLight with the
following parameters:

* Aninput image to remove the light/background
* Light pattern mat

e Method, o is difference, 1 division
The output is a new image matrix without the light/background.

The following code implements the background removal using the light pattern:

Mat removeLight (Mat img, Mat pattern, int method)
{
Mat aux;
// if method is normalization
if (method==1)
{
// Require change our image to 32 float for division
Mat img32, pattern32;
img.convertTo (img32, CV_32F);
pattern.convertTo (pattern32, CV_32F);
// Divide the image by the pattern
aux= 1-(img32/pattern32) ;

[108]

Chapter 5

// Scale it to convert to 8bit format
aux=aux*255;
// Convert 8 bits format
aux.convertTo (aux, CV_8U) ;

lelse{
aux= pattern-img;

}

return aux;

}

Let's try to understand this. After creating the aux variable, in order to save the
result, we select the method that is chosen by the user and passed via a parameter to
the function. If the method selected is 1, we apply the division method.

The division method requires a 32-bit float image to allow us to divide the images.
The first step is to convert the image and light pattern mat to 32-bit depth:

// Require change our image to 32 float for division
Mat img32, pattern32;

img.convertTo (img32, CV_32F);

pattern.convertTo (pattern32, CV_32F);

Now we can perform the mathematical operations in our matrix, as described,
dividing the image by the pattern and inverting the result:

// Divide the image by the pattern
aux= 1-(img32/pattern32) ;

// Scale it to convert o 8bit format
aux=aux*255;

Now, we have the result, but we need to return an 8-bit depth image, and then,
use the convert function, as we did previously, to convert it to a 32-bit float:

// Convert 8 bits format
aux.convertTo (aux, CV_8U) ;

Now we can return the aux variable with the result. For the difference method, the
development is very easy because we don't have to convert our images, we only
need to perform the difference and return. If we don't assume that the pattern is
equal to or greater than the image, then we will require a few checks and truncate
values that can be less than 0 or greater than 255:

aux= pattern-img;

[109]

Automated Optical Inspection, Object Segmentation, and Detection

The following figure is the result of applying the image light pattern to our
input image:

In the results that we obtain, we can check how the light gradient is removed and the
possible artifacts are removed as well.

However, what happens when we don't have a light/background pattern? There
are a few different techniques to do this, and we are going to present the most

basic one. Using a filter, we can create one that can be used, but there are better
algorithms from which you can learn the background from a few images, where the
pieces appear in different areas. This technique sometimes requires a background
estimation image initialization, where our basic approach can play very well. These
advanced techniques are explored in the video surveillance chapter.

To estimate the background image, we will use a blur with a large kernel size that

is applied to our input image. This is a common technique used in OCR where

the letters are thin and small relative to the whole document, and allows us to
perform an approximation of the light patterns in the image. We can see the light/
background pattern reconstruction on the left-hand side figure and the ground truth
on the right-hand side figure:

[110]

Chapter 5

We can see that there are minor differences in the light patterns, but this result is
enough to remove the background, and we can see the result in the following figure
using difference images.

In the following figure, we can see the result of applying the image difference
between the original input image and the estimated background image that are
computed with the previous approach:

O O
o

The calculateLightPattern function creates this light pattern or background
approximation:

Mat calculateLightPattern(Mat img)

{

Mat pattern;

// Basic and effective way to calculate the light pattern from one
image

blur (img, pattern, Size(img.cols/3,img.cols/3));

return pattern;

}

[111]

Automated Optical Inspection, Object Segmentation, and Detection

This basic function applies a blur to an input image using a big kernel size relative
to the image size. From the code, it is one-third of the original width and height.

The thresholding operation

After removing the background, we only have to binarize the image for future
segmentation. Now, we will apply the threshold function using two different
threshold values: a very low value when we remove the light/background because
all non-interest regions are black or very low values, and a medium value when we
do not use a light removal method because we have a white background and the
object images have lower values. This last option allows us to check the results with
and without the background removal:

// Binarize image for segment
Mat img thr;
if (method light!=2) {
threshold(img no light, img thr, 30, 255, THRESH BINARY) ;
}else{
threshold(img no light, img thr, 140, 255, THRESH BINARY INV) ;

}

Now, we will continue with the most important part of our application: the
segmentation. We will use two different approaches or algorithms: connected
components and contours.

Segmenting our input image
Now, we will introduce you to the following two techniques used to segment our
thresholded image:

* The connected components
* The findContours function

With these two techniques, we will be allowed to extract each region of interest of
our image where our target objects appear; in our case, a nut, screw, and ring.

The connected component algorithm

The connected component is a very common algorithm used to segment and identify
parts in binary images. A connected component is an iterative algorithm used for
the purpose of labeling an image using an 8- or 4-connectivity pixel. Two pixels are
connected if they have the same value and are neighbors. In the following figure,
each pixel has eight neighbor pixels:

[112]

Chapter 5

A 4-connectivity means that only the 2, 4, 5, and 7 neighbors can be connected to the
center if they have the same value. In the case of 8-connectivity, 1, 2, 3, 4, 5, 6, 7, and
8 can be connected if they have the same value.

In the following example, we can see the difference between an eight and four
connectivity algorithm. We will apply each algorithm to the next binarized image.
We used a small 9 X 9 image and zoomed it to show how connected components,
and the difference between an 4- and 8-connectivity, work:

[113]

Automated Optical Inspection, Object Segmentation, and Detection

The 4-connectivity algorithm detects two objects, as shown on the left-hand side
image. The 8-connectivity algorithm detects only one object (the right-hand side
image) because two diagonal pixels are connected, whereas in a 4-connectivity
algorithm, only vertical and horizontal pixels are connected. We can see the result
in the following figure, where each object has a different gray color value:

OpenCV 3 introduces you to the connected components algorithm with the
following two different functions:

® connectedComponents (image, labels, connectivity=8, type=CV_325)

® connectedComponentsWithStats (image, labels, stats, centroids,
connectivity=8, ltype=CV_328)

Both the functions return an integer with the number of detected labels, where the
label 0 represents the background.

The difference between these two functions is basically the information that returns
each one. Let's check the parameters of each one. The connectedComponents
function give us the following parameters:

* Image: This is the input image to be labeled.

* Labels: This is a mat output with the same size of an input image, where
each pixel has the value of its label, and all 0's represent the background, the
pixels that have 1 as values represent the first connected component object,
and so on.

* Connectivity: This has two possible values: 8 or 4 that represents the
connectivity we want to use.

[114]

Chapter 5

* Type: This is the type of the label image that we would want to use: only two
types are allowed, cv32_s or cvie_u. By default, it is cv32_s.

The connectedComponentswithStats function has two more parameters that are
defined: stats and centroids parameters:

* stats: This is an output parameter for each label, including the background
label. The following statistics values can be accessed via stats (label, column),
where columns are defined as well, as follows:

° c¢c_sTAT LEFT: This is the leftmost x coordinate of a connected
component object

° cc_sTaT_ToP: This is the topmost y coordinate of a connected
component object

© cc_sTAT_WIDTH: This is the width of a connected component object
defined by its bounding box

° cc_sTAT_HEIGHT: This is the height of a connected component object
defined by its bounding box

° cc_sTAaT_AREA: This is the number of pixels (area) of the connected
component object

* Centroids: The centroid points in £loat type for each label inclusive of
the background

In our example application, we will create two functions that are to be applied to
these two OpenCV algorithms and show the user the obtained result in a new image
with colored objects in the basic algorithm and draw the area of the stats algorithm
for each object.

Let's define the basic drawing of the connected component function:

void ConnectedComponents (Mat img)
{
// Use connected components to divide our possibles parts of images
Mat labels;
int num objects= connectedComponents (img, labels) ;
// Check the number of objects detected
if (num objects < 2) {
cout << "No objects detected" << endl;
return;
}else{
cout << "Number of objects detected: " << num objects - 1 << endl;

}

[115]

Automated Optical Inspection, Object Segmentation, and Detection

}

// Create output image coloring the objects
Mat output= Mat::zeros(img.rows,img.cols, CV_8UC3) ;
RNG rng(OxFFFFFFFF) ;
for(int i=1; i<num objects; i++)
Mat mask= labels==i;
output.setTo (randomColor (rng), mask) ;

}

imshow ("Result", output) ;

First of all, we call the OpenCV connectedComponents function that returns the
number of objects detected. If the number of objects is less than two, this means that
only the background object is detected, and then, we don't need to draw anything
and finish. If the algorithm detects more than one object, then we show the number
of objects detected via the terminal:

Mat labels;

int num objects= connectedComponents (img, labels) ;
// Check the number of objects detected
if (num objects < 2){
cout << "No objects detected" << endl;
return;
lelse{
cout << "Number of objects detected: " << num objects - 1 << endl;

Now, we will draw all the detected objects in a new image with different colors,
and then we need to create a new black image with the same input size and three
channels:

Mat output= Mat::zeros(img.rows,img.cols, CV_8UC3) ;

Then, we need to loop over each label, except the 0 value because it's the
background label:

for(int i=1; i<num objects; i++)

To extract each object from the label image, we need to create a mask for each label i
using a comparison, and save it in a new image:

Mat mask= labels==i;

Finally, we set a pseudo-random color to the output image using the mask:

output.setTo (randomColor (rng), mask) ;

}

[116]

Chapter 5

After we loop all images, we have all the objects with different colors in our output
image, and we only have to show the output image:

mshow ("Result", output) ;

This is the result where each object is painted with a different color or gray value:

Now, we will explain how to use the connected components with the stats OpenCV
algorithm and show some more information in the output result image. The
following function implements this functionality:

void ConnectedComponentsStats (Mat img)
{
// Use connected components with stats
Mat labels, stats, centroids;
int num objects= connectedComponentsWithStats (img, labels, stats,
centroids) ;
// Check the number of objects detected
if (num objects < 2) {
cout << "No objects detected" << endl;
return;
}else{
cout << "Number of objects detected: " << num objects - 1 << endl;
}
// Create output image coloring the objects and show area
Mat output= Mat::zeros (img.rows,img.cols, CV_8UC3) ;
RNG rng(OxFFFFFFFF) ;
for(int i=1; i<num objects; i++)
cout << "Object "<< 1 << " with pos: " << centroids.at<Point2d> (i)
<< " with area " << stats.at<int>(i, CC_STAT AREA) << endl;
Mat mask= labels==i;

[117]

Automated Optical Inspection, Object Segmentation, and Detection

output.setTo (randomColor (rng) , mask) ;

// draw text with area

stringstream ss;

Ss << "area: " << stats.at<int>(i, CC_STAT AREA);

putText (output,
ss.str (),
centroids.at<Point2d> (1),
FONT_HERSHEY SIMPLEX,
0.4,
Scalar (255,255,255)) ;
}

imshow ("Result", output) ;

}

Let's understand the code, as we did in the non-stats function. We call the connected
components algorithm; but, in this case, using the stats function, we check whether
we can detect more than one object:

Mat labels, stats, centroids;

int num objects= connectedComponentsWithStats (img, labels, stats,
centroids) ;

// Check the number of objects detected
if (num objects < 2){
cout << "No objects detected" << endl;
return;
lelse{
cout << "Number of objects detected: " << num objects - 1 << endl;

}

Now we have two more output results: the stats and centroids variables.
Then, for each label that we detect, we will show its centroid and area via the
command line:

for(int i=1; i<num objects; i++)
cout << "Object "<< i << " with pos: " << centroids.at<Point2d> (i)
<< " with area " << stats.at<int>(i, CC_STAT AREA) << endl;

You can check the call to the stats variable in order to extract the area using the
stats.at<int>(I, CC STAT AREA) column constant.

Now, as mentioned earlier, we paint the output image of the object labeled with the
i number:

Mat mask= labels==i;
output.setTo (randomColor (rng), mask) ;

[118]

Chapter 5

Finally, we need to add over the image, in the centroid of the object segmented,
some info like the area. To do this, we use the stats and centroid variables using
the putText function. First, we need to create a stringstream to add the stats area
information:

// draw text with area
stringstream ss;
Ss << "area: " << stats.at<int>(i, CC_STAT AREA);

Then, use the putText using the centroid as the text position:

putText (output,
ss.str (),
centroids.at<Point2d> (i),
FONT_HERSHEY SIMPLEX,
0.4,
Scalar (255,255,255)) ;

The result of this function looks like this:

The findContours algorithm

The findContours algorithm is one of the most frequently used OpenCV algorithms
to segment objects. This algorithm has been included in OpenCV since its first
version and provides more information and descriptors, such as shapes, topological
organizations, and so on, to the developers:

void findContours (InputOutputArray image, OutputArrayOfArrays
contours, OutputArray hierarchy, int mode, int method, Point
offset=Point ())

[119]

Automated Optical Inspection, Object Segmentation, and Detection

Let's explain each parameter, as follows:

* Image: This is the input binary image.

* Contours: This is the contours output where each detected contour is a vector
of points.

* Hierarchy: This is the optional output vector where we store the hierarchy
of contours. This is the topology of the image where we can get the relations
between each contour.

e Mode: This is the method used to retrieve the contours:

o

o

RETR_EXTERNAL: This retrieves only the external contours.

RETR_LIST: This retrieves all the contours without establishing
the hierarchy.

RETR_ccoMp: This retrieves all the contours with two levels of
hierarchy: external and holes. If another object is inside one hole, then
this is put on the top of the hierarchy.

RETR_TREE: This retrieves all the contours that create a full hierarchy
between contours.

* Method: This allows you to perform the approximation method to retrieve
the contours' shapes:

o

CV_CHAIN_ APPROX_NONE: This does not apply any approximation to
the contours and stores all the contours points.

CV_CHAIN_ APPROX_SIMPLE: This compresses all the horizontal,
vertical, and diagonal segments that store only the start and end
points.

CV_CHAIN APPROX TC89 L1,CV_CHAIN APPROX TC89 KCOS This
applies the Teh-Chin chain approximation algorithm.

* Offset: This is the optional point value used to shift all the contours.
This is very useful when we work in a ROI and is required to retrieve
the global positions.

s

Note

The input image is modified by the findContours function. Create a
copy of your image before it is sent to this function if you need it.

[120]

Chapter 5

Now that we know the parameters of the findContours function, let's apply them to
our example:

void FindContoursBasic (Mat img)
vector<vector<Point> > contours;
findContours(img, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Mat output= Mat::zeros(img.rows,img.cols, CV_8UC3) ;
// Check the number of objects detected

if (contours.size() == 0){
cout << "No objects detected" << endl;
return;
}else{
cout << "Number of objects detected: " << contours.size() << endl;

}

RNG rng(OxFFFFFFFF) ;
for (int i1=0; i<contours.size(); i++)

drawContours (output, contours, i, randomColor (rng)) ;
imshow ("Result", output) ;

}

Let's understand our implementation line by line.

In our case, we don't require any hierarchy, so we will retrieve only the external
contours of all possible objects. To do this, we use the RETR_EXTERNAL mode, and
we use the basic contour encoding scheme using the CHAIN_APPROX_SIMPLE method:

vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours (img, contours, RETR_EXTERNAL, CHAIN APPROX SIMPLE) ;

Similar to the connected components examples mentioned earlier, we first check how
many contours we have retrieved. If there are none, then we exit from our function:

// Check the number of objects detected

if (contours.size() == 0){
cout << "No objects detected" << endl;
return;
}else{
cout << "Number of objects detected: " << contours.size() << endl;

[121]

Automated Optical Inspection, Object Segmentation, and Detection

Finally, we draw each detected contour that we detect, and we draw it in our output
image with a different color. To do this, OpenCV provides us with a function to
draw the result of the find contours image:

for(int i=0; i<contours.size(); i++)
drawContours (output, contours, i, randomColor (rng)) ;
imshow ("Result", output) ;

}

The drawContours function allows the following parameters:

* Image: This is the output image used to draw the contours.
* Contours: This is the vector of contours.

e Contour index: This is a number that indicates the contour to be drawn; if it
is negative, all the contours are drawn.

e Color: This is the color used to draw the contour.
* Thickness: If this is negative, then the contour is filled with the color chosen.

* Line type: This is used when we want draw with antialiasing, or other
drawing methods.

* Hierarchy: This is an optional parameter and is only needed if you want to
draw only some of the contours.

* Max level: This is an optional parameter and taken into account only when
the hierarchy parameter is available. If it is set to 0, only the specified contour
is drawn, and if it is set to 1, the function draws the current contour and
the nested as well. If it is set to 2, then the algorithm draws all the specified
contour hierarchies.

* Offset: This is an optional parameter used to shift the contours.

The result of our example can be shown in the following image:

[122]

Chapter 5

After a binarized image, we can see the three different algorithms that are used to
divide and separate each object of an image, allowing us to isolate each object in
order to manipulate or extract features.

We can see the entire process in the following image:

Summary

In this chapter, we explored the basics of object segmentation in a controlled
situation, where a camera take pictures of different objects.

We learned how to remove the background and light in order to allow us to binarize
our image by minimizing the noise and also three different algorithms used to
divide and separate each object of an image, allowing us to isolate each object in
order to manipulate or extract features. Finally, we extracted all the objects on an
image, where we are going to extract characteristics of each of these objects to train a
machine learning system.

In the next chapter, we are going to predict the class of any of objects in an image,
and then call to a robot or any other system to pick any of them, or detect an object
that is not in the correct carrier tape, and then notify to a person to pick it up.

[123]

Learning Object Classification

In the previous chapter, we introduced you to the basic concepts of object
segmentation and detection. This means isolating the objects that appear in
an image for future processing and analysis.

This chapter covers how to classify each of these isolated objects. In order to allow
us to classify each object, we need to train our system to be capable of learning

the required parameters to decide which specific label should be assigned to the
detected object (depending on the different categories taken into account during the
training phase).

This chapter is going to introduce you to the basic concepts of machine learning to
classify images with different labels.

We will create a basic application based on the segmentation algorithm, as discussed
in Chapter 5, Automated Optical Inspection, Object Segmentation, and Detection. This
segmentation algorithm extracts parts of an image, which contains objects. For each
object, we will extract the different features and analyze them using a machine
learning algorithm. Using a machine learning algorithm, we are able to show,

using our user interface, the labels of each object detected in the input image

to the end user.

In this chapter, we will cover the different topics and algorithms, which are
as follows:

* Anintroduction to machine learning concepts

* Common machine learning algorithms and processes

* Feature extraction

* Support vector machines

* Training and prediction

[125]

Learning Object Classification

Introducing machine learning concepts

Machine learning is an old concept that was defined in 1959 by Arthur Samuel as a
field of study that gives computers the ability to learn without being explicitly programmed.
Tom. M. Mitchel provided a more formal definition. In this definition, Tom links the
concept of samples or experiences, labels, and performance measurements.

The machine learning definition by Arthur Samuel is
referenced from Some Studies in Machine Learning Using the
Game of Checkers in the IBM Journal of Research and Development
- (Volume: 3, Issue: 3), p. 210 and a phrase in The New Yorker
% and Office Management the same year.

The more formal definition by Tom. M. Mitchel is referenced
from Machine Learning Book, McGray Hill 1997 (http://www.
cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/
mlbook.html).

Machine learning involves pattern recognition and the learning theory in artificial
intelligence and is related to computational statistics.

Machine learning is used in hundreds of applications such as OCR (Optical
Character Recognition), spam filtering, search engines, and thousands of Computer
Vision applications that we will develop in the current chapter, where a machine
learning algorithm tries to classify the objects that appear in the input image.

Depending on how machine ML algorithms learn from the data or samples, we can
divide them into three categories, which are as follows:

* Supervised learning: The computer learns from a set of labeled data. The
goal is to learn the parameters of the model and rules that allow computers
to map the relation between data and output label results.

* Unsupervised learning: No labels are given, and the computer tries to
discover the input structure of the input data.

* Reinforcement learning: The computer interacts with a dynamic
environment that performs its goal and learns from its mistakes.

[126]

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html

Chapter 6

Depending on the desired results that we obtain from our machine learning
algorithm, we can categorize them into the following:

* Classification: In classification, the space of the inputs can be divided into N
classes, and the prediction results of a given sample are one of these training
classes. This is one of the most used categories. A typical example is an e-mail
spam filtering where there are only two classes: spam and non spam or OCR,
where only N characters are available, and each character is one class.

* Regression: The output is a continuous value instead of a discrete value such
as a classification result. One example of regression can be the prediction of
the house price by providing the house size, number of years, and location.

* Clustering: The inputs are divided into N groups using unsupervised
training.

* Density estimation: This finds the (probability) distribution of inputs.

In our example, we will use a supervised learning classification algorithm, where a
training dataset (with labels) is used to train the model, and the result of our model is
a prediction of one label.

Machine learning is a modern approach to artificial intelligence and statistics and
involves both the techniques.

In machine learning, there are several approaches and methods, and some of them
used are SVM (support vector machines), ANNs (artificial neural networks),
clustering such as K-Nearest Neighbors, decision trees, or deep learning, which is a
big neural network approach used in some cases that are convolutional, and so on.

All these methods and approaches are supported, implemented, and
well-documented in OpenCV. We are going to explain one of them, SVM,
in the next section.

OpenCV implements eight of these machine learning algorithms. They all inherit
from the statModel class:

* Artificial neural networks

* Boost

* Random trees

* Expectation maximization

* K-Nearest Neighbours

* Logistic regression

* The Normal Bayes Classifier
* Support vector machines

[127]

Learning Object Classification

To get more details of each algorithm, read the OpenCV document page
of machine learning at http://docs.opencv.org/trunk/dc/ddé/

ml intro.html.

In the following image, you can see the machine learning class hierarchy:

cvAlgorithm

[[

cwlz ANN_MLP cvml:DTrees cvml:EM cviml:KNearest eyl 0 il lassifier cyamizSYM

cuzml:Baost cuzil:RTrees

The statModel class provides all the read and write functions that are very
important to save our machine learning parameters and training data.

In machine learning, the most time-consuming part is the training method.
Training can take from seconds to weeks or months for large datasets and complex
machine learning structures; for example, in deep learning and a big neural network
structure with more than 100,000 images. In deep learning algorithms, it is common
to use parallel hardware processing; for example, GPUs or graphic cards with the
CUDA technology used to decrease the computing time during training.

This means that we cannot train our algorithm each time we run our application,
and it's recommended that we save our model after it is trained because all training/
prediction parameters of machine learning are saved. Next, when we want to run

it in the future, we only need to load/read from our saved model without training
anymore if we need to update our model with more data.

The statModel is an interface that is implemented by each of its implementations.
The two key functions are train and predict.

The train method is responsible for learning the parameters of the model from a
training dataset. The train function has the following four calls that can be called in
four different ways:

bool train(const Ptr<TrainData>& trainData, int flags=0);

bool train(InputArray samples, int layout, InputArray responses) ;
Ptr< Tp> train(const Ptr<TrainData>& data, const Tp::Params& p, int
flags=0);

Ptr< Tp> train(InputArray samples, int layout, InputArray responses,
const Tp::Params& p, int flags=0);

[128]

http://docs.opencv.org/trunk/dc/dd6/ml_intro.html
http://docs.opencv.org/trunk/dc/dd6/ml_intro.html

Chapter 6

It has the following parameters:

trainData: This is the training data that can be loaded or created from the
TrainData class. This class is new in OpenCV 3 and helps developers to
create training data because different algorithms require different types of
structure of arrays for training and prediction, such as the ANN algorithm.

samples: This is the array of training array samples such as training data in
the format required by the machine learning algorithm.

layout: There are two types of layouts: ROW_SAMPLE (training samples are the
matrix rows) and COL_SAMPLE (training samples are the matrix columns).

responses: This is the vector of responses that is associated with the
sample data.

p: This is the StatModel parameter.

flags: These are optional flags defined by each method.

The predict method is simpler and has only one call:

float StatModel: :predict (InputArray samples, OutputArray
results=noArray (), int flags=0)

It has the following parameters:

samples: These are the input samples to be predicted. There can be only one
or multiple data to be predicted.

results: This is the result of each input row samples (computed by the
algorithm from the previously trained model).

flags: These are optional flags that are model-dependent. Some models,
such as Boost and SVM recognize the statModel: :RAW_OUTPUT flag, which
makes the method return the raw results (the sum) and not the class label.

The statModel class provides other very useful methods, which are as follows:

isTrained (): This returns true if the model is trained

isClassifier (): This returns true if the model is a classifier or false in the
case of regression

getVarCount () : This returns the number of variables in training samples
save (const string& filename): This saves the model in the filename

Ptr< Tp> load(const strings filename): This loads the model from the
filename, for example: Ptr<SVM> svm = StatModel::load<SVM> ("my svm_
model.xml") ;

[129]

Learning Object Classification

® calcError(const Ptr<TrainData>& data, bool test, OutputArray
resp): This calculates the error from a test data, where the data is the
training data. If the test is true, the method calculates the error from the
test subset of all the training data, otherwise it's computed over the training
subset of the data. Finally resp is the optional output results.

Now, we will learn how to construct a basic application that uses machine learning
in Computer Vision apps.

Computer Vision and the machine
learning workflow

The Computer Vision applications with machine learning have a common basic
structure. This structure is divided into different steps that are repeated in almost
all Computer Vision applications, and some others are omitted. In the following
diagram, we show you the different steps involved:

- .
Pre-process
¥
- y
Feature Extraction
v
" W,
Segmentation
¥
- ' Y
Machine Learning
Classification
. . ,
! ¥
' r ™

' Post-process

[130]

Chapter 6

Almost any Computer Vision application starts with a preprocessing stage that is
applied to the input image. Preprocessing involves light removal conditions and
noise, thresholding, blur, and so on.

After we apply all the preprocessing steps required to the input image, the second
step is segmentation. In the segmentation step, we need to extract the regions of
interest of an image and isolate each one as a unique object of interest. For example,
in a face detection system, we need to separate the faces from the rest of the parts in
the scene.

After getting the objects inside the image, we continue with the next step. We

need to extract all the features of each one detected object; a feature is a vector of
characteristics of objects. A characteristic describes our objects and can be the area of
the object, contour, texture pattern, and so on.

Now, we have the descriptor of our object; a descriptor is a feature that describes an
object, and we use these descriptors to train our model or predict one of them. To

do this, we need to create a big dataset of features, where hundreds, thousands, and
millions of images are preprocessed, and extracted features use all these features in a
train model function that we choose:

Machine Learning Algorithm

/ generate \

> Train

Training
DataSet

MODEL

[131]

Learning Object Classification

When we train a dataset, the model learns all the parameters required to predict
when a new vector of features with an unknown label is given:

Machine Learning Algorithm

/ generate \

> Train

Training
DataSet

y MODEL
| I > Predict
Unknown
Sample \
y

Classification
result

return

After we get the prediction, sometimes, a post-processing of output data is required;
for example, merging multiple classifications to decrease the prediction error or
merging multiple labels. A sample case is OCR (Optical Character Recognition),
where the classification result is per character, and by combining the results of
character recognitions, we construct a word. This means that we can create a post-
processing method to correct errors in detected words.

With this small introduction to machine learning for Computer Vision, we will learn
how to implement our own application that uses machine learning to classify objects
in a slide tape. We will use support vector machines as our classification methods,
and see how to use them. The other machine learning algorithms have very similar
uses. The OpenCV documentation has a detailed information about all machine
learning algorithms.

[132]

Chapter 6

Automatic object inspection
classification example

Continuing with the example of the previous chapter, the automatic object inspection
segmentation, where a carrier tape contains three different types of objects (nuts,
screws, and rings), and with Computer Vision, we will be able to recognize each one
of them to send notifications to a robot or similar to put each one in different boxes.

*/

7Y

In Chapter 5, Automated Optical Inspection, Object Segmentation, and Detection, we
preprocessed the input images and extracted the regions of interest of images

and isolated each object using different techniques. Now, we will apply all these
concepts, as explained in previous sections, in this example to extract features and
classify each object and allow to possible robot to put each one in different boxes. In
our application, we are only going to show the labels of each image in an image, but
we can send the positions in the image and the labels to other devices as a robot.

[133]

Learning Object Classification

Then, our goal is from an input image with few objects to show the objects' names
over each one, as per the following image. However, to learn all the steps of the
complete process, we will train our system to show each image that is trained, create
a plot to show each object the features that we are going to use with different colors,
the preprocessed input image, and finally, the output classification result with the
following result:

Extract Features

We will perform the following steps for our example application:

1. For training each image:

° Preprocess an image

o

Segment an image

2. For each object in an image:

Extract the features

° Add the object to the training feature vector with its label
Create an SVM model.

Train our SVM model with the training feature vector.

5. Preprocess an input image to be classified.

[134]

Chapter 6

6. Segment an input image.
7. For each object detected:

° Extract the features
° Predict with an SVM model

° Paint the result in an output image

For the preprocessing and segmentation stage, we will use the code discussed in
Chapter 5, Automated Optical Inspection, Object Segmentation, and Detection, and we
will explain how to extract the features and create the vectors required to train and
predict our model.

Feature extraction

Now, let's extract the features of each object. To understand the feature concept

of a feature vector, we will extract very simple features, but it is enough to get
good results. In other solutions, we can get more complex features, such as texture
descriptors, contour descriptors, and so on.

In our example, we only have these three types of objects, nuts, rings, and screws, in
different possible positions. All these possible objects and positions are shown in the
following figure:

[135]

Learning Object Classification

We will explore the good characteristics that will help the computer to identify each
object. The characteristics are as follows:

* The area of an object

* The aspect ratio, which is the width divided by the height of the
bounding rectangle

¢ The number of holes

¢ The number of contour sides

These characteristics can describe our objects very well, and if we use all of them,
the classification error can be very small. However, in our implemented example,
we will use only the first two characteristics, the area and aspect ratio, for learning
purposes because we can plot these characteristics in 2D graphics, and we can show
that these values describe our objects correctly. We can differentiate one kind of
object from the others visually in the graphic plot.

To extract these features, we will use the black/white input ROI image as the input,
where only one object appears in a white color with a black background. This input
is the result of segmentation, as discussed in Chapter 5, Automated Optical Inspection,
Object Segmentation, and Detection. We will use the findCountours algorithm for
segmentation objects and create the ExtractFeatures function for this purpose:

vector< vector<float> > ExtractFeatures(Mat img, vector<ints>*
left=NULL, vector<ints>* top=NULL)

vector< vector<float> > output;

vector<vector<Point> > contours;

Mat input= img.clone() ;

vector<Vec4i> hierarchy;
findContours (input, contours, hierarchy, RETR_CCOMP, CHAIN APPROX

SIMPLE) ;
// Check the number of objects detected
if (contours.size() == 0){

return output;
RNG rng(OxFFFFFFFF) ;

for(int i=0; i<contours.size(); i++){

Mat mask= Mat::zeros(img.rows, img.cols, CV_8UC1) ;
drawContours (mask, contours, i, Scalar(l), FILLED, LINE 8,
hierarchy, 1);

[136]

Chapter 6

Scalar area_ s= sum(mask) ;
float area= area s[0];

if (area>500){ //if the area is greather than min.

RotatedRect r= minAreaRect (contours[i]) ;

float width= r.size.width;

float height= r.size.height;

float ar=(width<height)?height/width:width/height;

vector<float> row;
row.push back (area) ;
row.push back(ar) ;
output.push back (row) ;
if (left!=NULL) {

left->push back((int)r.center.x);

if (top!=NULL) {
top->push back((int)r.center.y);

miw->addImage ("Extract Features", mask*255) ;
miw->render () ;
waitKey (10) ;

}

return output;

}

Let's understand the code in detail.

We will create a function that has one image as the input and returns two vectors
of left and top position for each object detected in the image as parameters; this will
be used to draw its label over each object. The output of the function is a vector of
vectors of floats; in other words, a matrix where each row contains the features of
each object that is detected.

[137]

Learning Object Classification

Let's create a function that draws a label over each other:

1.

Firstly, we need to create the output vector variable and contours variable
that are to be used in our FindContours algorithm segmentation, and we
need to create a copy of our input image because the findContours OpenCV
functions modify the input image:

vector< vector<float> > output;
vector<vector<Point> > contours;
Mat input= img.clone() ;
vector<Vec4i> hierarchy;

findContours (input, contours, hierarchy, RETR CCOMP,
CHAIN_ APPROX SIMPLE) ;

Now, we can use the findContours function to retrieve each object in an
image. If we don't detect any contour, we return an empty output matrix:
if (contours.size() ==) {

return output;

}

For each object contour we are going to draw in a black image each object
using 1 as the color value. This is our mask image to compute all features:
for(int i1=0; i<contours.size(); i++){

Mat mask= Mat::zeros(img.rows, img.cols, CV_8UC1) ;

drawContours (mask, contours, i, Scalar(l), FILLED, LINE 8,
hierarchy, 1);

It's important to use the value 1 to draw inside the shape because we can
calculate the area by summing all values inside the contour:

Scalar area_s= sum(mask) ;
float area= area s[0];

This area is our first feature. Now, we will use this area value as a filter to
remove the small objects that we need to avoid. All objects with an area

less than a minimum area are discarded. After we pass the filter, we create
the second feature, that is, the aspect ratio of an object. This means that the
maximum width or height is divided by the minimum width or height. This
feature can differentiate the screw from other objects easily:

if(area>MIN_AREA){ //1f the area is greather than min.
RotatedRect r= minAreaRect (contours[i]) ;
float width= r.size.width;
float height= r.size.height;
float ar=(width<height) ?height/width:width/height;

[138]

Chapter 6

6. Now, we have the features, and we only need to add these features to the
output vector. To do this, we create a row vector of floats and add these
values, and later on, add this row to the output vector:

vector<float> row;
row.push back (area) ;
row.push back(ar) ;
output.push back (row) ;

7. If the left and top params are passed, then add the top-left values to the
params output:
if (left!=NULL) {
left->push back((int)r.center.x);
}
if (top!=NULL) {
top->push back((int)r.center.y);

}

8. Finally, we will show the detected objects in a window for the user feedback,
and when we finish processing all the objects in the image, we will return the
output feature vector:

miw->addImage ("Extract Features", mask*255);
miw->render () ;
waitKey (10) ;

return output;

Now, we can extract the features of each input image, and we need to continue with
the next step, which is to train our model.

Training an SVM model

We will use a supervised learning model, and then, we will require images of each
object and their corresponding labels. There are no minimum number of images in
the dataset. If we provide more images for the training process, we will get a better
classification model (in most of the cases), but simple classifiers can be enough to
train simple models. To do this, we create three folders (screw, nut, and ring),
where all the images of each type are placed together.

For each image in the folder, we need to extract the features and add them to the
train feature matrix, and at same time, we need to create a new vector with the labels
for each row, corresponding to each training matrix.

[139]

Learning Object Classification

To evaluate our system, we split each folder into a number of images for testing and
training purposes. We leave around 20 images for testing and the others for training.
Then, we need to create two vectors of labels and two matrices for train and test.

Then, let's understand the code. First, we need to create our model. We need to
declare the model in order to be able access it as a global variable. OpenCV uses
the ptr template class for pointers:

Ptr<SVM> gsvm;

After we declare the pointer to the new SVM model, we need to create it and train it.
We create the trainaAndTest function for this purpose:

void trainAndTest ()

{

vector< float > trainingData;
vector< int > responsesData;
vector< float > testData;

vector< float > testResponsesData;

int num_for_ test= 20;

// Get the nut images

readFolderAndExtractFeatures ("../data/nut/tuerca %04d.pgm", O,
num_for_ test, trainingData, responsesData, testData,
testResponsesData) ;
// Get and process the ring images
readFolderAndExtractFeatures ("../data/ring/arandela_%04d.pgm",
1, num for test, trainingData, responsesData, testData,
testResponsesData) ;
// get and process the screw images
readFolderAndExtractFeatures ("../data/screw/tornillo %04d.pgm",
2, num_for test, trainingData, responsesData, testData,
testResponsesData) ;
cout << "Num of train samples: " << responsesData.size() <<
endl;
cout << "Num of test samples: " << testResponsesData.size() <<
endl;

// Merge all data
Mat trainingDataMat (trainingData.size()/2, 2, CV_32FC1,
&trainingData[0]) ;

[140]

Chapter 6

Mat responses (responsesData.size(), 1, CV_32SC1,
&responsesData[0]) ;

Mat testDataMat (testData.size()/2, 2, CV_32FC1l, &testDatal[0]);

Mat testResponses (testResponsesData.size(), 1, CV_32FC1,
&testResponsesData[0]) ;

svm = SVM::create() ;
svm->setType (SVM: :C_SVC) ;
svm->setKernel (SVM: : CHI2) ;

svm->setTermCriteria (TermCriteria (TermCriteria: :MAX ITER,
100, 1le-6));

svm->train(trainingDataMat, ROW_SAMPLE, responses);

if (testResponsesData.size () >0) {
cout << "Evaluation" << endl;
cout << "==========" << endl;
// Test the ML Model
Mat testPredict;
svm->predict (testDataMat, testPredict) ;
cout << "Prediction Done" << endl;
// Error calculation
Mat errorMat= testPredict!=testResponses;
float error= 100.0f * countNonZero (errorMat) /
testResponsesData.size() ;
cout << "Error: " << error << "\%" << endl;
// Plot training data with error label
plotTrainData (trainingDataMat, responses, &error) ;

lelse{
plotTrainData (trainingDataMat, responses) ;

}

Let's understand the code in detail.

First, we need to create the required variables to store the training and test data:

vector< float > trainingData;
vector< int > responsesData;
vector< float > testData;

vector< float > testResponsesData;

[141]

Learning Object Classification

As mentioned earlier, we need to read all the images from each folder, extract the
features, and save them in our training and test data. To do this, we will use the
readFolderAndExtractFeatures function:

int num for test= 20;
// Get the nut images

readFolderAndExtractFeatures ("../data/nut/tuerca_ %$04d.pgm", 0,
num_for test, trainingData, responsesData, testData,
testResponsesData) ;

// Get and process the ring images

readFolderAndExtractFeatures ("../data/ring/arandela %04d.pgm",
1, num for test, trainingData, responsesData, testData,
testResponsesData) ;

// get and process the screw images

readFolderAndExtractFeatures ("../data/screw/tornillo %$04d.pgm",
2, num_for test, trainingData, responsesData, testData,
testResponsesData) ;

The readFolderAndExtractFeatures function uses the videoCapture OpenCV
function to read all the images of a folder like a video or camera. For each image
read, we extract the features and then add them to the corresponding output vector:

bool readFolderAndExtractFeatures (string folder, int label, int num_
for_test,
vector<float> &trainingData, vector<int> &responsesData,
vector<float> &testData, vector<float> &testResponsesData)

VideoCapture images;
if (images.open (folder)==false) {
cout << "Can not open the folder images" << endl;
return false;
}
Mat frame;
int img index=0;
while (images.read(frame)) {
//// Preprocess image
Mat pre= preprocessImage (frame) ;
// Extract features
vector< vector<float> > features= ExtractFeatures (pre);
for(int i=0; i< features.size(); i++)({
if (img index >= num for test) {
trainingData.push back (features[i] [0]) ;
trainingData.push back (features[i] [1]);
responsesData.push back (label) ;

[142]

Chapter 6

lelse{

I

testData.push back (features[i] [0])
testData.push back (features[i] [1]);
testResponsesData.push back((float)label) ;
}
}
img index++;
}

return true;

}

After filling all the vectors with features and labels, we need to convert them to the
OpenCV mat format in order to send them to the training function:

// Merge all data

Mat trainingDataMat (trainingData.size() /2, 2, CV_32FC1,
&trainingDatal[0]) ;

Mat responses (responsesData.size(), 1, CV_32SC1,
&responsesDatal[0]) ;

Mat testDataMat (testData.size()/2, 2, CV_32FCl, &testDatal0]);

Mat testResponses (testResponsesData.size(), 1, CV_32FC1,
&testResponsesData[0]) ;

We are now ready to create and train our machine learning model, as mentioned
earlier, and we are going to use a support vector machine. First, we need to set up
the basic model parameters:

// Set up SVM's parameters
svm = SVM: :create() ;
svm->setType (SVM: :C_SVC) ;
svm->setKernel (SVM: : CHI2) ;
svm->setTermCriteria (TermCriteria (TermCriteria::MAX ITER, 100, le-6));

We need to define the SVM type and kernel to be used and the criteria to stop

the learning process; in our case, we will use a maximum number of iterations,
stopping at 100 iterations. For more information on each parameter and what it
does, check out the OpenCV documentation. After we create the parameters of
the setup, we need to create the model by calling the train method and using the
trainingDataMat and response matrices:

// Train the SVM
svm->train(trainingDataMat, ROW_SAMPLE, responses) ;

[143]

Learning Object Classification

We use the test vector (by setting the num_for_test variable greater than 0) to
obtain an approximation error of our model. To get the error estimation, we need
to predict all the test vector features to obtain the SVM prediction results and then
compare these results to the original labels:

if (testResponsesData.size () >0) {
cout << "Evaluation" << endl;
cout << "==========" << endl;
// Test the ML Model
Mat testPredict;
svm->predict (testDataMat, testPredict) ;
cout << "Prediction Done" << endl;
// Error calculation
Mat errorMat= testPredict!=testResponses;
float error= 100.0f * countNonZero (errorMat) /
testResponsesData.size() ;
cout << "Error: " << error << "\%" << endl;
// Plot training data with error label
plotTrainData (trainingDataMat, responses, &error) ;
}else{
plotTrainData (trainingDataMat, responses) ;

}

We use the predict function using the testDataMat features and a new mat to
predict results. The predict function allows you to do multiple predictions at the
same time, giving a matrix instead of only one row.

After the prediction is done, we only need to get the difference of testpredict
using our testResponses (the original labels). If there are differences, we only need
to count the number of differences and divide them by the total number of tests to
get the error.

% We can use the new TrainData class to generate the feature vectors
/~— and samples and split out train data in test and train vectors.

[144]

Chapter 6

Finally, we need to show the training data in a 2D plot, where the y axis is the aspect
ratio feature and the x axis is the area of objects. Each point has a different color and
shape (cross, square, and circle) that shows a different kind of object, and we can
clearly see the groups of objects in the following figure:

Now, we are very close to finishing our application sample. We have a trained SVM
model that we can use as a classification model to detect the type of a new incoming
and unknown feature vector. Then, the next step is to predict an input image with
unknown objects.

[145]

Learning Object Classification

Input image prediction

Now, we are ready to explain the main function, which loads the input image and
predicts the objects that appear inside. We are going to use something like this,

as shown in the following figure, as the input image where multiple and different
objects appear:

For all training images, we need to load and preprocess the input image:

1. First, we load and convert the images to gray color values.

2. We then apply the preprocessing tasks, as discussed in Chapter 5,
Automated Optical Inspection, Object Segmentation, and Detection, using the
preprocessImage function:

Mat pre= preprocessImage (img) ;

3. Now, we extract the features of vectors of all the objects that appear in the
image and the top-left positions of each one using the ExtractFeatures that
we mentioned earlier:

// Extract features

vector<int> pos_top, pos_left;

vector< vector<float> > features= ExtractFeatures(pre, &pos_
left, &pos_top);

4. For each object that we detect, we store it as a feature row, and then,
we convert each row as a Mat of one row and two features:
for (int i=0; i< features.size(); i++) {
Mat trainingDataMat (1, 2, CV_32FCl, &features[i] [0]);

[146]

Chapter 6

Then, we predict the single object using the predict function of our
StatModel SVM:

float result= svm->predict (trainingDataMat) ;

The float result of the prediction is the label of the object that is detected.
Then, to complete the application, we only need to draw the label over each
image in an output image.

We will use a stringstream to store the text and a Scalar to store the color
of each different label:

stringstream ss;

Scalar color;

if (result==0) {
color= green; // NUT
ss << "NUT";

}

else if (result==1) {
color= blue; // RING
ss << "RING"

}

else if (result==2) {
color= red; // SCREW
ss << "SCREW";

}

Draw the label text over each object using its detected position in the
ExtractFeatures function:

putText (img output,
ss.str (),
Point2d(pos_left[i], pos topl[il),
FONT_HERSHEY SIMPLEX,
0.4,
color) ;

Finally, we will draw our results in the output window:

miw->addImage ("Binary image", pre);
miw->addImage ("Result", img output) ;
miw->render () ;

waitKey (0) ;

[147]

Learning Object Classification

The final result of our application shows a window that is tiled with four screens,
where the top-left image is the input training image, the top-right image is the plot
training image, the bottom-left image is the input image to analyze preprocessed,
and the bottom-right image is the final result of the prediction:

Extract Features

Summary

In this chapter, we learned the basics of the machine learning model and how to
apply a small sample application to understand all the basic tips required to create
our own ML application.

Machine learning is complex and involves different techniques for each use case
(supervised learning, unsupervised, clustering, and so on), and we learned how to
create the most typical ML application and the supervised learning with an SVM.

The most important concepts in supervised machine learning are: first, we need to
have an appropriate number of samples or datasets; and second, we need to correctly
choose the features that describe our objects correctly. For more information on image
features, refer to Chapter 8, Video Surveillance, Background Modeling, and Morphological
Operations. Third, choose the best model that gives us the best predictions.

If we don't reach the correct predictions we have to check each one of these concepts
to look for where the issue is.

In the next chapter, we will introduce background subtraction methods, which are
very useful for video surveillance applications where the backgrounds don't give us
any interesting information and must be discarded to allow the segmentation of the
interested objects in which to analyze.

[148]

Detecting Face Parts and
Overlaying Masks

In the previous chapter, we learned about object classification and how machine
learning can be used to achieve it. In this chapter, we will learn how to detect and
track different face parts. We will start the discussion by understanding the face
detection pipeline and how it's built from the ground up. We will then use this
framework to detect face parts, such as eyes, ears, mouth, and nose. We will then
learn how to overlay funny masks on these face parts in a live video.

In this chapter, we will cover the following topics:

Working with Haar cascades
Integral images and why we need them
Building a generic face detection pipeline

Detecting and tracking face parts, such as eyes, ears, nose, and mouth in a
live video stream from the webcam

Automatically overlaying facemasks, sunglasses, and a funny nose on a
person's face in a video

[149]

Detecting Face Parts and Overlaying Masks

Understanding Haar cascades

Haar cascades are cascade classifiers that are based on Haar features. What is a
cascade classifier? It is simply a concatenation of a set of weak classifiers that can

be used to create a strong classifier. Now, what do we mean by weak and strong
classifiers? Weak classifiers are classifiers whose performances are limited. They
don't have the ability to classify everything correctly. If you keep the problem really
simple, they might perform at an acceptable level. Strong classifiers, on the other
hand, are really good at classifying our data correctly. We will see how it all comes
together in the next couple of paragraphs. Another important part of Haar cascades
is Haar features. These features are simple summations of rectangles and differences
of those areas across the image. Let's consider the following figure:

A B A B
D C D C
A B A B
D C D C

If we want to compute the Haar features of the region ABCD, we just need to
compute the difference between the white pixels and the colored pixels in that
region. As shown in in the preceding four figures, we use different patterns to build
Haar features. There are a lot of other patterns that are used as well. We do this at
multiple scales to make the system scale invariant. When we say multiple scales, we
just scale the image down to compute the same features again. This way, we can
make it robust against size variations of a given object.

[150]

Chapter 7

As it turns out, this concatenation system is a very good method to detect
. objects in an image. In 2001, Paul Viola and Michael Jones published a
% seminal paper where they described a fast and effective method for object
L detection. If you are curious to learn more about it, you can check out
their paper at http://www.cs.ubc.ca/~lowe/425/slides/13-
Violadones.pdf.

Let's dive deeper into it to understand what they actually did. They basically
described an algorithm that uses a boosted cascade of simple classifiers. This system
is used to build a strong classifier that can perform really well. Why did they use
these simple classifiers instead of complex classifiers that can be more accurate? Well,
using this technique, they were able to avoid the problem of having to build a single
classifier that can perform with high precision. These single-step classifiers tend to

be complex and computationally intensive. The reason why their technique works

so well is because the simple classifiers can be weak learners, which means that they
don't need to be complex.

Consider the problem of building a table detector. We want to build a system that
will automatically learn what a table looks like. Based on this knowledge, it should
be able to identify whether there is a table in any given image. To build this system,
the first step is to collect images that can be used to train our system. There are a

lot of techniques available in the machine learning world that can be used to train

a system like this. Keep in mind that we need to collect a lot of table and non-table
images if we want our system to perform well. In machine learning lingo, table
images are called positive samples and the non-table images are called negative
samples. Our system will ingest this data and then learn to differentiate between
these two classes.

In order to build a real-time system, we need to keep our classifier nice and simple.
The only concern is that simple classifiers are not very accurate. If we try to make
them more accurate, then they will end up being computationally intensive and
hence slow. This kind of trade-off between accuracy and speed is very common in
machine learning. So, we will overcome this problem by concatenating a bunch of
weak classifiers to create a strong and unified classifier. We don't need the weak
classifiers to be very accurate. To ensure the quality of the overall classifier, Viola and
Jones have described a nifty technique in the cascading step. You can go through the
paper to understand the complete system.

[151]

http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf
http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf

Detecting Face Parts and Overlaying Masks

Now that we understand the general pipeline, let's see how to build a system that
can detect faces in a live video. The first step is to extract features from all the images.
In this case, the algorithms need these features to learn and understand what faces
look like. They used Haar features in their paper to build the feature vectors. Once
we extract these features, we pass them through a cascade of classifiers. We just
check all the different rectangular subregions and keep discarding the ones that don't
have faces in them. This way, we arrive at the final answer quickly to see whether a
given rectangle contains a face or not.

What are integral images?

In order to extract these Haar features, we need to calculate the sum of the pixel
values enclosed in many rectangular regions of the image. To make it scale invariant,
we need to compute these areas at multiple scales (that is, for various rectangle
sizes). If implemented naively, this would be a very computationally intensive
process. We would have to iterate over all the pixels of each rectangle, including
reading the same pixels multiple times if they are contained in different overlapping
rectangles. If you want to build a system that can run in real time, you cannot spend
so much time in computation. We need to find a way to avoid this huge redundancy
during the area computation because we iterate over the same pixels multiple times.
To avoid this, we can use something called integral images. These images can be
initialized in a linear time (by iterating only twice over the image) and can then be
provided with the sum of pixels inside any rectangle of any size by reading only four
values. To understand it better, let's take a look at the following figure:

[152]

Chapter 7

If we want to calculate the area of any rectangle in our image, we don't have to
iterate through all the pixels in that region. Let's consider a rectangle formed by the
top-left point in the image and any point P as the opposite corner. Let A, denote the
area of this rectangle. For example, in the preceding figure, A, denotes the area of the
5 X 2 rectangle formed by taking the top-left point and B as opposite corners. Let's
take a look at the following figure for clarity purposes:

A B A B
D C D C
A B A B
D C D C

Let's take a look at the top-left diagram in the preceding figure. The colored pixels
indicate the area between the top-left pixel and point A. This is denoted by A . The
remaining diagrams are denoted by their respective names: A, A, and A . Now,
if we want to calculate the area of the rectangle ABCD, as shown in the preceding
figure, we will use the following formula:

Area of the rectangle ABCD = A_- (A, + A, -A,)

[153]

Detecting Face Parts and Overlaying Masks

What's so special about this particular formula? As we know, extracting Haar
features from the image includes computing these summations, and we would

have to do it for a lot of rectangles at multiple scales in the image. A lot of these
calculations are repetitive because we would be iterating over the same pixels over
and over again. It is so slow that building a real-time system wouldn't be feasible.
Hence, we need this formula. As you can see, we don't have to iterate over the same
pixels multiple times. If we want to compute the area of any rectangle, all the values
on the right-hand side of the previous equation are readily available in our integral
image. We just use pick up the right values, substitute them in the previous equation,
and extract the features.

Overlaying a facemask in a live video

OpenCV provides a nice face detection framework. We just need to load the cascade
file and use it to detect the faces in an image. When we capture a video stream from
the webcam, we can overlay funny masks on top of our faces. It will look something
like this:

Frame

[154]

Chapter 7

Let's take a look at the main parts of the code to see how to overlay the preceding
mask on top of the face in the input video stream. The complete code is available in

the downloadable code bundle provided along with this book:

int main(int argc, char* argv([])

{

string faceCascadeName = argv([1l];
// Variable declarations and initializations

// Iterate until the user presses the Esc key
while (true)

{

// Capture the current frame
cap >> frame;

// Resize the frame

resize (frame, frame, Size (), scalingFactor, scalingFactor,

INTER_AREA) ;

// Convert to grayscale
cvtColor (frame, frameGray, CV_BGR2GRAY) ;

// Equalize the histogram
equalizeHist (frameGray, frameGray) ;

// Detect faces

faceCascade.detectMultiScale (frameGray, faces, 1.1,
0|CV_HAAR SCALE_IMAGE, Size(30, 30));

Let's see what happened here. We start reading input frames from the webcam

and resize it to our size of choice. The captured frame is a color image and face
detection works on grayscale images. So, we convert it to grayscale and equalize the
histogram. Why do we need to equalize the histogram? We need to do this in order
to compensate for any kind of issues, such as lighting, saturation, and so on. If the
image is too bright or too dark, the detection will be poor. So, we need to equalize

the histogram to ensure that our image has a healthy range of pixel values:

// Draw green rectangle around the face
for(int 1 = 0; 1 < faces.size(); 1i++)

{

Rect faceRect (faces[i] .x, faces[i] .y, faces[i] .width,

faces[i] .height) ;

[155]

Detecting Face Parts and Overlaying Masks

// Custom parameters to make the mask fit your face. You
may have to play around with them to make sure it works.

int x = faces[i] .x - int(0.1*faces[i] .width) ;
int y = faces[i]l.y - int(0.0*faces[i] .height);
int w = int (1.1 * faces[i] .width) ;

int h = int (1.3 * faces[i] .height);

// Extract region of interest (ROI) covering your face
frameROI = frame (Rect(x,y,w,h));

At this point, we know where the face is. So, we extract the region of interest to
overlay the mask in the right position:

// Resize the face mask image based on the dimensions of
the above ROI

resize (faceMask, faceMaskSmall, Size(w,h));

// Convert the above image to grayscale
cvtColor (faceMaskSmall, grayMaskSmall, CV_BGR2GRAY) ;

// Threshold the above image to isolate the pixels
associated only with the face mask

threshold (grayMaskSmall, grayMaskSmallThresh, 230, 255,
CV_THRESH BINARY INV) ;

We isolated the pixels associated with the face mask. Now, we want to overlay

the mask in such a way that it doesn't look like a rectangle. We want the exact
boundaries of the overlaid object so that it looks natural. Let's go ahead and overlay
the mask now:

// Create mask by inverting the above image (because we
don't want the background to affect the overlay)

bitwise not (grayMaskSmallThresh, grayMaskSmallThreshInv) ;

// Use bitwise "AND" operator to extract precise boundary
of face mask

bitwise and(faceMaskSmall, faceMaskSmall, maskedFace,
grayMaskSmallThresh) ;

// Use bitwise "AND" operator to overlay face mask
bitwise and(frameROI, frameROI, maskedFrame,
grayMaskSmallThreshInv) ;

// Add the above masked images and place it in the
original frame ROI to create the final image

add (maskedFace, maskedFrame, frame (Rect(x,y,w,h)));

[156]

Chapter 7

}

// code dealing with memory release and GUi

return 1;

What happened in the code?

The first thing to note is that this code takes two input arguments: the face cascade
xml file and the mask image. You can use the haarcascade_frontalface_alt.xml
and facemask. jpg files that are provided. We need a classifier model that can be
used to detect faces in an image, and OpenCV provides a prebuilt xml file that can be
used for this purpose. We use the faceCascade . load () function to load the xm1 file
and also check whether the file has been loaded correctly.

We initiate the video capture object to capture the input frames from the webcam.
We then convert it to grayscale to run the detector. The detectMultiScale function
is used to extract the boundaries of all the faces in the input image. We may have

to scale down the image according to our needs, so the second argument in this
function takes care of this. This scaling factor is the jump that we take at each scale.
Since we need to look for faces at multiple scales, the next size will be 1.1 times
bigger than the current size. The last parameter is a threshold that specifies the
number of adjacent rectangles that are needed to keep the current rectangle.

It can be used to increase the robustness of the face detector.

We start the while loop and keep detecting the face in every frame until the user
presses the Esc key. Once we detect a face, we need to overlay a mask on it. We

may have to modify the dimensions slightly to ensure that the mask fits nicely. This
customization is slightly subjective and it depends on the mask that's being used.
Now that we have extracted the region of interest, we need to place our mask on top
of this region. If we overlay the mask with its white background, it will look weird.
We need to extract the exact curvy boundaries of the mask and overlay it. We want
the skull-mask pixels to be visible and the remaining area to be transparent.

As we can see, the input mask has a white background. So, we create a mask by
applying a threshold to the mask image. Using trial and error, we can see that a
threshold of 240 works well. In the image, all the pixels with an intensity value
greater than 240 will become 0, and all the others will become 255. As far as the
region of interest is concerned in the image, we need to black out all the pixels in this
region. To do this, we simply use the inverse of the mask that was just created. In the
last step, we just add the masked versions to produce the final output image.

[157]

Detecting Face Parts and Overlaying Masks

Get your sunglasses on

Now that we understand how to detect faces, we can generalize this concept to
detect different parts of the face. We will use an eye detector to overlay sunglasses
in a live video. It's important to understand that the Viola-Jones framework can be
applied to any object. The accuracy and robustness will depend on the uniqueness
of the object. For example, a human face has very unique characteristics, so it's easy
to train our system to be robust. On the other hand, an object such as a towel is too
generic, and there are no distinguishing characteristics as such. So, it's more difficult
to build a robust towel detector.

Once you build the eye detector and overlay glasses on top of it, it will look
something like this:

Frame

Let's take a look at the main parts of the code:

int main(int argc, char* argvl([])

{

string faceCascadeName = argv[1l];
string eyeCascadeName = argv[2];

// Variable declarations and initializations

// Face detection code

[158]

Chapter 7

vector<Point> centers;

// Draw green circles around the eyes

for(int i = 0; 1 < faces.size(); i++)
Mat faceROI = frameGray (facesl[i]);
vector<Rect> eyes;

// In each face, detect eyes

eyeCascade.detectMultiScale (faceROI, eyes, 1.1, 2, 0 |CV_
HAAR SCALE_ IMAGE, Size (30, 30));

As we can see here, we run the eye detector only in the face region. We don't need

to search the entire image for eyes because we know that the eyes will always be on
your face:

// For each eye detected, compute the center
for(int j = 0; j < eyes.size(); Jj++)
{
Point center(faces[i] .x + eyes[]j].x + int (eyes[j].
width*0.5), faces[i].y + eyes[j]l.y + int(eyes[j].height*0.5));
centers.push back (center) ;

// Overlay sunglasses only if both eyes are detected
if (centers.size () == 2)

{

Point leftPoint, rightPoint;

// Identify the left and right eyes
if (centers[0] .x < centers[1l].x)

leftPoint = centers|[0];

rightPoint = centers|[1];
else

leftPoint = centers([1];

rightPoint = centers[0];

[159]

Detecting Face Parts and Overlaying Masks

We detect the eyes and store them only when we find both of them. We then use
their coordinates to determine which one is the left eye and the right eye:

// Custom parameters to make the sunglasses fit your face.
You may have to play around with them to make sure it works.

int w = 2.3 * (rightPoint.x - leftPoint.x);
int h = int (0.4 * w);

int x = leftPoint.x - 0.25%*w;

int y = leftPoint.y - 0.5%*h;

// Extract region of interest (ROI) covering both the eyes
frameROI = frame (Rect(x,y,w,h));

// Resize the sunglasses image based on the dimensions of
the above ROI

resize (eyeMask, eyeMaskSmall, Size(w,h));

In the preceding code, we adjusted the size of the sunglasses to fit the scale of our
faces in the webcam:

// Convert the above image to grayscale
cvtColor (eyeMaskSmall, grayMaskSmall, CV_BGR2GRAY) ;

// Threshold the above image to isolate the foreground
object

threshold(grayMaskSmall, grayMaskSmallThresh, 245, 255,
CV_THRESH BINARY INV);

// Create mask by inverting the above image (because we
don't want the background to affect the overlay)
bitwise not (grayMaskSmallThresh, grayMaskSmallThreshInv) ;

// Use bitwise "AND" operator to extract precise boundar
<] p Y
of sunglasses

bitwise and(eyeMaskSmall, eyeMaskSmall, maskedEye,
grayMaskSmallThresh) ;

// Use bitwise "AND" operator to overlay sunglasses
bitwise and(frameROI, frameROI, maskedFrame,
grayMaskSmallThreshInv) ;

[160]

Chapter 7

// Add the above masked images and place it in the
original frame ROI to create the final image

add (maskedEye, maskedFrame, frame (Rect (x,y,w,h)));

}
// code for memory release and GUI

return 1;

Looking inside the code

If you notice, the flow of the code looks similar to the face detection code that we
discussed earlier. We load the face detection cascade classifier as well as the eye
detection cascade classifier. Now why do we need to load the face cascade classifier
when we are detecting the eyes? Well, we don't really need to use the face detector,
but it helps us limit our search for the eyes' location. We know that the eyes are
always located on somebody's face, so we can limit the eye detection to the face
region. The first step would be to detect the face and then run our eye detector code
on this region. Since we would be operating on a smaller region, it would be faster
and more efficient.

For each frame, we start by detecting the face. We then go ahead and detect the
location of the eyes by operating on this region. After this step, we need to overlay
the sunglasses. To do this, we need to resize the sunglasses' image to make sure that
it fits our face. To get the proper scale, we can consider the distance between the two
eyes that are being detected. We overlay the sunglasses only when we detect both
the eyes. That's why we first run the eye detector, collect all the centers, and then
overlay the sunglasses. Once we have this, we just need to overlay the sunglasses'
mask. The principle used for masking is very similar to the principle that we used
to overlay the facemask. You may have to customize the sizing and position of the
sunglasses depending on what you want. You can play around with different types
of sunglasses to see what they look like.

[161]

Detecting Face Parts and Overlaying Masks

Tracking your nose, mouth, and ears

Now that you know how to track different things using the framework, you can try
tracking your nose, mouth, and ears as well. Let's use a nose detector to overlay a
funny nose on top:

Frame

You can refer to the code files for a complete implementation of this detector. There
are cascade files called haarcascade mcs nose.xml, haarcascade mcs mouth.xml,
haarcascade mcs_leftear.xml, and haarcascade mcs rightear.xml that can be
used to track the different face parts. So, you can play around with them and try to
overlay a moustache or Dracula ears on yourself!

Summary

In this chapter, we discussed Haar cascades and integral images. We learned how
the face detection pipeline is built. We learned how to detect and track faces in a

live video stream. We discussed how to use the face detection framework to detect
various face parts, such as eyes, ears, nose, and mouth. We also learned how to
overlay masks on top on the input image using the results of the face parts detection.

In the next chapter, we will learn about video surveillance, background removal,
and morphological image processing.

[162]

Video Surveillance,
Background Modeling, and
Morphological Operations

In this chapter, we will learn how to detect a moving object in a video that is taken
from a static camera. This is used extensively in video surveillance systems. We will
discuss the different characteristics that can be used to build this system. We will
learn about background modeling and see how we can use it to build a model of the
background in a live video. Once we do this, we will combine all the blocks to detect
the objects of interest in the video.

By the end of this chapter, you should be able to answer the following questions:

What is naive background subtraction?

What is frame differencing?

How to build a background model?

How to identify a new object in a static video?

What is morphological image processing and how is it related to
background modeling?

How to achieve different effects using morphological operators?

[163]

Video Surveillance, Background Modeling, and Morphological Operations

Understanding background subtraction

Background subtraction is very useful in video surveillance. Basically, the
background subtraction technique performs really well in cases where we need

to detect moving objects in a static scene. Now, how is this useful for video
surveillance? The process of video surveillance involves dealing with a constant
data flow. The data stream keeps coming in at all times, and we need to analyze it to
identify any suspicious activities. Let's consider the example of a hotel lobby. All the
walls and furniture have a fixed location. Now, if we build a background model, we
can use it to identify suspicious activities in the lobby. We can take advantage of the
fact that the background scene remains static (which happens to be true in this case).
This helps us avoid any unnecessary computation overheads.

As the name suggests, this algorithm works by detecting the background and
assigning each pixel of an image to two classes: either the background (assuming that
it's static and stable) or the foreground. It then subtracts the background from the
current frame to obtain the foreground. By the static assumption, foreground objects
will naturally correspond to objects or people moving in front of the background.

In order to detect moving objects, we first need to build a model of the background.
This is not the same as direct frame differencing because we are actually modeling
the background and using this model to detect moving objects. When we say that
we are modeling the background, we are basically building a mathematical formulation
that can be used to represent the background. So, this performs in a much better way
than the simple frame differencing technique. This technique tries to detect static
parts of the scene and then updates the background model. This background model
is then used to detect background pixels. So, it's an adaptive technique that can
adjust according to the scene.

Naive background subtraction

Let's start the background subtraction discussion from the beginning. What does a
background subtraction process look like? Consider the following image:

[164]

Chapter 8

The preceding image represents the background scene. Now, let's introduce a new
object into this scene:

[165]

Video Surveillance, Background Modeling, and Morphological Operations

As shown in the preceding image, there is a new object in the scene. So, if we
compute the difference between this image and our background model, you
should be able to identify the location of the TV remote:

The overall process looks like this:

Input
image

)N
¥ e

Backgrouhd
scene

[166]

Chapter 8

Does it work well?

There's a reason why we call it the naive approach. It works under ideal conditions,
and as we know, nothing is ideal in the real world. It does a reasonably good job of
computing the shape of the given object, but it does so under some constraints. One
of the main requirements of this approach is that the color and intensity of the object
should be sufficiently different from that of the background. Some of the factors that
affect these kinds of algorithms are image noise, lighting conditions, autofocus in
cameras, and so on.

Once a new object enters our scene and stays there, it will be difficult to detect new
objects that are in front of it. This is because we don't update our background model,
and the new object is now part of our background. Consider the following image:

[167]

Video Surveillance, Background Modeling, and Morphological Operations

Now, let's say a new object enters our scene:

We identify this to be a new object, which is fine. Let's say another object comes into
the scene:

[168]

Chapter 8

It will be difficult to identify the location of these two different objects because their
locations overlap. Here's what we get after subtracting the background and applying
the threshold:

In this approach, we assume that the background is static. If some parts of our
background start moving, then those parts will start getting detected as new objects.
So, even if the movements are minor, say a waving flag, it will cause problems in our
detection algorithm. This approach is also sensitive to changes in illumination, and
it cannot handle any camera movement. Needless to say, it's a delicate approach! We
need something that can handle all these things in the real world.

Frame differencing

We know that we cannot keep a static background image that can be used to detect
objects. So, one of the ways to fix this would be to use frame differencing. It is one of
the simplest techniques that we can use to see what parts of the video are moving.
When we consider a live video stream, the difference between successive frames
gives a lot of information. The concept is fairly straightforward. We just take the
difference between successive frames and display the difference.

[169]

Video Surveillance, Background Modeling, and Morphological Operations

If I move my laptop rapidly, we can see something like this:

Instead of the laptop, let's move the object and see what happens. If I rapidly shake
my head, it will look something like this:

[170]

Chapter 8

As you can see in the preceding images, only the moving parts of the video get
highlighted. This gives us a good starting point to see the areas that are moving in
the video. Let's take a look at the function to compute the frame difference:

Mat frameDiff (Mat prevFrame, Mat curFrame, Mat nextFrame)

{

Mat diffFramesl, diffFrames2, output;

// Compute absolute difference between current frame and the next
frame

absdiff (nextFrame, curFrame, diffFramesl) ;

// Compute absolute difference between current frame and the
previous frame
absdiff (curFrame, prevFrame, diffFrames2);

// Bitwise "AND" operation between the above two diff images
bitwise and(diffFramesl, diffFrames2, output) ;

return output;

}

Frame differencing is fairly straightforward. You compute the absolute difference
between the current frame and previous frame and between the current frame and
next frame. We then take these frame differences and apply a bitwise AND operator.
This will highlight the moving parts in the image. If you just compute the difference
between the current frame and previous frame, it tends to be noisy. Hence, we need
to use the bitwise AND operator between successive frame differences to get some
stability when we see the moving objects.

Let's take a look at the function that can extract and return a frame from the webcam:

Mat getFrame (VideoCapture cap, float scalingFactor)
//float scalingFactor = 0.5;
Mat frame, output;

// Capture the current frame
cap >> frame;

// Resize the frame
resize (frame, frame, Size(), scalingFactor, scalingFactor, INTER
AREA) ;

[171]

Video Surveillance, Background Modeling, and Morphological Operations

// Convert to grayscale
cvtColor (frame, output, CV_BGR2GRAY) ;

return output;

}

As we can see, it's pretty straightforward. We just need to resize the frame and
convert it to grayscale. Now that we have the helper functions ready, let's take
a look at the main function and see how it all comes together:

int main(int argc, char* argv([])
Mat frame, prevFrame, curFrame, nextFrame;
char ch;

// Create the capture object

// 0 -> input arg that specifies it should take the input from the
webcam

VideoCapture cap(0) ;

// If you cannot open the webcam, stop the execution!
if(!cap.isOpened())
return -1;

//create GUI windows
namedWindow ("Frame") ;

// Scaling factor to resize the input frames from the webcam
float scalingFactor = 0.75;

prevFrame = getFrame (cap, scalingFactor) ;
curFrame = getFrame (cap, scalingFactor) ;
nextFrame = getFrame (cap, scalingFactor) ;

// Iterate until the user presses the Esc key
while (true)
// Show the object movement
imshow ("Object Movement", frameDiff (prevFrame, curFrame,
nextFrame)) ;

// Update the variables and grab the next frame
prevFrame = curFrame;

curFrame = nextFrame;

nextFrame = getFrame (cap, scalingFactor) ;

// Get the keyboard input and check if it's 'Esc'
Y P

[172]

Chapter 8

// 27 -> ASCII value of 'Esc' key
ch = waitKey(30);
if (ch == 27) {

break;

}
}

// Release the video capture object
cap.release() ;

// Close all windows
destroyAllWindows () ;

return 1;

How well does it work?

As we can see, frame differencing addresses a couple of important problems that we
faced earlier. It can quickly adapt to lighting changes or camera movements. If an
object comes in the frame and stays there, it will not be detected in the future frames.
One of the main concerns of this approach is about detecting uniformly colored
objects. It can only detect the edges of a uniformly colored object. This is because a
large portion of this object will result in very low pixel differences, as shown in the

following image:

[173]

Video Surveillance, Background Modeling, and Morphological Operations

Let's say this object moved slightly. If we compare this with the previous frame,
it will look like this:

Overlapping
region

Hence, we have very few pixels that are labeled on that object. Another concern
is that it is difficult to detect whether an object is moving toward the camera or
away from it.

The Mixture of Gaussians approach

Before we talk about Mixture of Gaussians (MOG), let's see what a mixture model is.
A mixture model is just a statistical model that can be used to represent the presence
of subpopulations within our data. We don't really care about what category each
data point belongs to. All we need to do is identify whether the data has multiple
groups inside it. Now, if we represent each subpopulation using the Gaussian
function, then it's called Mixture of Gaussians. Let's consider the following image:

[174]

Chapter 8

Now, as we gather more frames in this scene, every part of the image will gradually
become part of the background model. This is what we discussed earlier as well.

If a scene is static, the model adapts itself to make sure that the background model
is updated. The foreground mask, which is supposed to represent the foreground
object, looks like a black image at this point because every pixel is part of the
background model.

OpenCV has multiple algorithms implemented for the Mixture of
\ Gaussians approach. One of them is called MOG and the other is called
~ MOG2. To get a detailed explanation, you can refer to http://docs.
Q opencv.org/master/db/d5c/tutorial py bg subtraction.
html#gsc.tab=0. You will also be able check out the original research
papers that were used to implement these algorithms.

Let's introduce a new object into this scene and see what the foreground mask looks
like using the MOG approach:

[175]

http://docs.opencv.org/master/db/d5c/tutorial_py_bg_subtraction.html#gsc.tab=0
http://docs.opencv.org/master/db/d5c/tutorial_py_bg_subtraction.html#gsc.tab=0
http://docs.opencv.org/master/db/d5c/tutorial_py_bg_subtraction.html#gsc.tab=0

Video Surveillance, Background Modeling, and Morphological Operations

Let's wait for some time and introduce a new object into the scene. Let's take a look
at what the new foreground mask looks like using the MOG2 approach:

As you can see in the preceding images, the new objects are being identified
correctly. Let's take a look at the interesting part of the code (you can get the
complete code in the . cpp files):

int main(int argc, char* argv([])

{

// Variable declarations and initializations

// Iterate until the user presses the Esc key
while (true)

// Capture the current frame

cap >> frame;

// Resize the frame
resize (frame, frame, Size(), scalingFactor, scalingFactor,
INTER_AREA) ;

// Update the MOG background model based on the current frame
PMOG->operator () (frame, fgMaskMOG) ;

// Update the MOG2 background model based on the current frame
PMOG2 ->operator () (frame, fgMaskMOG2) ;

[176]

Chapter 8

// Show the current frame
//imshow ("Frame", frame) ;

// Show the MOG foreground mask
imshow ("FG Mask MOG", fgMaskMOG) ;

// Show the MOG2 foreground mask
imshow ("FG Mask MOG 2", fgMaskMOG2) ;

// Get the keyboard input and check if it's 'Esc’
// 27 -> ASCII value of 'Esc' key
ch = waitKey(30);
if (ch == 27) {
break;
}

}

// Release the video capture object
cap.release() ;

// Close all windows
destroyAllWindows () ;

return 1;

What happened in the code?

Let's quickly go through the code and see what's happening there. We use the
Mixture of Gaussians model to create a background subtractor object. This object
represents the model that will be updated as and when we encounter new frames
from the webcam. As we can see in the code, we initialize two background
subtraction models: BackgroundSubtractorMoG and BackgroundSubtractorMOG2.
They represent two different algorithms that are used for background subtraction.
The first one refers to the paper by P. KadewTraKuPong and R. Bowden titled, An
improved adaptive background mixture model for real-time tracking with shadow detection.
You can check it out at http://personal.ee.surrey.ac.uk/Personal /R.
Bowden/publications/avbs01/avbs01.pdf. The second one refers to the

paper by Z.Zivkovic titled, Improved adaptive Gausian Mixture Model for background
subtraction. You can check it out at http://www. zoranz.net/Publications/
zivkovic2004ICPR.pdf. We start an infinite while loop and continuously read the
input frames from the webcam. With each frame, we update the background model,
as shown in the following lines:

PMOG->operator () (frame, fgMaskMOG) ;
PMOG2 ->operator () (frame, fgMaskMOG2) ;

[177]

http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf

Video Surveillance, Background Modeling, and Morphological Operations

The background model gets updated in these steps. Now, if a new object enters
the scene and stays there, it will become part of the background model. This
helps us overcome one of the biggest shortcomings of the naive background
subtraction model.

Morphological image processing

As discussed earlier, background subtraction methods are affected by many factors.
Their accuracy depends on how we capture the data and how it's processed. One of
the biggest factors that tend to affect these algorithms is the noise level. When we
say noise, we are talking about things, such as graininess in an image, isolated black/
white pixels, and so on. These issues tend to affect the quality of our algorithms. This
is where morphological image processing comes into picture. Morphological image
processing is used extensively in a lot of real-time systems to ensure the quality of
the output.

Morphological image processing refers to processing the shapes of features in

the image. For example, you can make a shape thicker or thinner. Morphological
operators rely on how the pixels are ordered in an image, but on their values. This
is the reason why they are really well suited to manipulate shapes in binary images.
Morphological image processing can be applied to grayscale images as well, but the
pixel values will not matter much.

What's the underlying principle?

Morphological operators use a structuring element to modify an image. What is a
structuring element? A structuring element is basically a small shape that can be
used to inspect a small region in the image. It is positioned at all the pixel locations in
the image so that it can inspect that neighborhood. We basically take a small window
and overlay it on top of a pixel. Depending on the response, we take an appropriate
action at that pixel location.

Let's consider the following input image:

Movp

[178]

Chapter 8

We will apply a bunch of morphological operations to this image to see how the
shape changes.

Slimming the shapes

We can achieve this effect using an operation called erosion. This is an operation that
makes a shape thinner by peeling the boundary layers of all the shapes in the image:

Output image after erosion

Let's take a look at the function that performs morphological erosion:

Mat performErosion(Mat inputImage, int erosionElement, int
erosionSize)

Mat outputlImage;

int erosionType;

if (erosionElement == 0)
erosionType = MORPH RECT;

else if (erosionElement == 1)
erosionType = MORPH_CROSS;

else if (erosionElement == 2)
erosionType = MORPH ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (erosionType,
Size (2*erosionSize + 1, 2*erosionSize + 1), Point (erosionSize,
erosionSize)) ;

// Erode the image using the structuring element
erode (inputImage, outputImage, element) ;

// Return the output image
return outputImage;

[179]

Video Surveillance, Background Modeling, and Morphological Operations

You can check out the complete code in the . cpp files to understand how to use
this function. Basically, we build a structuring element using an built-in OpenCV
function. This object is used as a probe to modify each pixel based on certain
conditions. These conditions refer to what's happening around that particular pixel
in the image. For example, is it surrounded by white pixels? Or is it surrounded by
black pixels? Once we have an answer, we can take an appropriate action.

Thickening the shapes

We use an operation called dilation to achieve thickening. This is an operation that
makes a shape thicker by adding boundary layers to all the shapes in the image:

Output image after dilation

Here is the code to do this:

Mat performDilation (Mat inputImage, int dilationElement, int
dilationSize)

Mat outputlImage;

int dilationType;

if (dilationElement == 0)
dilationType = MORPH RECT;

else if (dilationElement == 1)
dilationType = MORPH CROSS;

else if (dilationElement == 2)
dilationType = MORPH ELLIPSE;

// Create the structuring element for dilation

Mat element = getStructuringElement (dilationType,
Size(2*dilationSize + 1, 2*dilationSize + 1), Point(dilationSize,
dilationSize)) ;

[180]

Chapter 8

// Dilate the image using the structuring element
dilate (inputImage, outputImage, element) ;

// Return the output image
return outputImage;

Other morphological operators

Here are some other morphological operators that are interesting. Let's first take a
look at the output image. We can take a look at the code at the end of this section.

Morphological opening

This is an operation that opens a shape. This operator is frequently used for noise
removal in an image. We can achieve morphological opening by applying erosion
followed by dilation to an image. The morphological opening process basically
removes small objects from the foreground in the image by placing them in

the background:

Output image after opening

Here is the function to the perform morphological opening;:

Mat performOpening(Mat inputImage, int morphologyElement, int
morphologySize)

{

Mat outputImage, tempImage;
int morphologyType;

if (morphologyElement == 0)
morphologyType = MORPH RECT;

else if (morphologyElement == 1)
morphologyType = MORPH CROSS;

[181]

Video Surveillance, Background Modeling, and Morphological Operations

else if (morphologyElement == 2)
morphologyType = MORPH ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (morphologyTy
pe, Size(2*morphologySize + 1, 2*morphologySize + 1),
Point (morphologySize, morphologySize)) ;

// RApply morphological opening to the image using the structuring
element

erode (inputImage, tempImage, element) ;

dilate (tempImage, outputImage, element) ;

// Return the output image
return outputImage;

}

As we can see here, we apply erosion and dilation to the image to perform the
morphological opening.

Morphological closing

This is an operation that closes a shape by filling the gaps. This operation is also used
for noise removal. We achieve morphological closing by applying dilation followed
by erosion to an image. This operation removes tiny holes in the foreground by
changing small objects in the background into the foreground.

Output image after closing

Let's quickly take a look at the function to perform the morphological closing:

Mat performClosing(Mat inputImage, int morphologyElement, int
morphologySize)

{

Mat outputImage, tempImage;
int morphologyType;

[182]

Chapter 8

if (morphologyElement == 0)
morphologyType = MORPH RECT;

else if (morphologyElement == 1)
morphologyType = MORPH_CROSS;

else if (morphologyElement == 2)
morphologyType = MORPH ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (morphologyTy
pe, Size(2*morphologySize + 1, 2*morphologySize + 1),
Point (morphologySize, morphologySize)) ;

// RApply morphological opening to the image using the structuring

element
dilate (inputImage, tempImage, element) ;
erode (tempImage, outputImage, element) ;

// Return the output image
return outputImage;

Drawing the boundary

We achieve this using the morphological gradient. This is an operation that draws
the boundary around a shape by taking the difference between dilation and erosion

of an image:

Output image after morphological gradient

[183]

Video Surveillance, Background Modeling, and Morphological Operations

Let's take a look at the function to perform the morphological gradient:

Mat performMorphologicalGradient (Mat inputImage, int
morphologyElement, int morphologySize)

{
Mat outputImage, tempImagel, tempImage2;
int morphologyType;

if (morphologyElement == 0)
morphologyType = MORPH RECT;

else if (morphologyElement == 1)
morphologyType = MORPH CROSS;

else if (morphologyElement == 2)
morphologyType = MORPH ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (morphologyTy
pe, Size(2*morphologySize + 1, 2*morphologySize + 1),
Point (morphologySize, morphologySize)) ;

// Apply morphological gradient to the image using the structuring
element

dilate (inputImage, tempImagel, element) ;
erode (inputImage, templmage2, element) ;

// Return the output image
return tempImagel - tempImage2;

White Top-Hat transform

While Top-Hat transform, also simply called Top-Hat transform, extracts finer details
from the images. We can apply white top-hat transform by computing the difference
between the input image and its morphological opening. This gives us the objects in
the image that are smaller than the structuring elements and are brighter than the
surroundings. So, depending on the size of the structuring element, we can extract
various objects in the given image:

[184]

Chapter 8

Output image after top hat

If you look carefully at the output image, you can see those black rectangles.
This means that the structuring element was able to fit in there, and so those
regions are blackened out. Here is the function to do this:

Mat performTopHat (Mat inputImage, int morphologyElement, int
morphologySize)

{
Mat outputImage;
int morphologyType;

if (morphologyElement == 0)
morphologyType = MORPH RECT;

else if (morphologyElement == 1)
morphologyType = MORPH CROSS;

else if (morphologyElement == 2)
morphologyType = MORPH_ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (morphologyTy
pe, Size(2*morphologySize + 1, 2*morphologySize + 1),
Point (morphologySize, morphologySize)) ;

// RApply top hat operation to the image using the structuring
element

outputImage = inputImage - performOpening (inputImage,
morphologyElement, morphologySize) ;

// Return the output image
return outputImage;

[185]

Video Surveillance, Background Modeling, and Morphological Operations

Black Top-Hat transform

Black Top-Hat transform, also simply called Black Hat transform, extracts finer
details from the image as well. We can apply black top-hat transform by computing
the difference between the morphological closing of an image and the image itself.
This gives us the objects in the image that are smaller than the structuring element
and are darker than the surroundings.

Output image after black hat

Let's take a look at the function to perform the black hat transform:

Mat performBlackHat (Mat inputImage, int morphologyElement, int
morphologySize)
{

Mat outputlImage;

int morphologyType;

if (morphologyElement == 0)
morphologyType = MORPH RECT;

else if (morphologyElement == 1)
morphologyType = MORPH CROSS;

else if (morphologyElement == 2)
morphologyType = MORPH ELLIPSE;

// Create the structuring element for erosion

Mat element = getStructuringElement (morphologyTy
pe, Size(2*morphologySize + 1, 2*morphologySize + 1),
Point (morphologySize, morphologySize)) ;

// RApply black hat operation to the image using the structuring

element
outputImage = performClosing(inputImage, morphologyElement,
morphologySize) - inputImage;

// Return the output image
return outputImage;

[186]

Chapter 8

Summary

In this chapter, we learned about the algorithms that are used for background
modeling and morphological image processing. We discussed naive background
subtraction and its limitations. We learned how to get motion information using
frame differencing and how it can be constrain us when we want to track different
types of objects. We also discussed Mixture of Gaussians, along with its formulation
and implementation details. We then discussed morphological image processing.
We learned how it can be used for various purposes and different operations were
demonstrated to show the use cases.

In the next chapter, we will discuss how to track an object and the various techniques
that can be used to do it.

[187]

Learning Object Tracking

In the previous chapter, we learned about video surveillance, background modeling,
and morphological image processing. We discussed how we can use different
morphological operators to apply cool visual effects to input images. In this chapter,
we will learn how to track an object in a live video. We will discuss the different
characteristics of an object that can be used to track it. We will also learn about
different methods and techniques used for object tracking. Object tracking is used
extensively in robotics, self-driving cars, vehicle tracking, player tracking in sports,
video compression, and so on.

By the end of this chapter, you will learn:

* How to track colored objects

* How to build an interactive object tracker
* Whatis a corner detector

* How to detect good features to track

* How to build an optical flow-based feature tracker

Tracking objects of a specific color

In order to build a good object tracker, we need to understand what characteristics
can be used to make our tracking robust and accurate. So, let's take a baby step in
this direction, and see how we can use colorspaces to come up with a good visual
tracker. One thing to keep in mind is that the color information is sensitive to
lighting conditions. In real-world applications, you need to do some preprocessing
to take care of this. But for now, let's assume that somebody else is doing this and we
are getting clean color images.

[189]

Learning Object Tracking

There are many different colorspaces and picking up a good one will depend on
what people use for different applications. While RGB is the native representation
on the computer screen, it's not necessarily ideal for humans. When it comes to
humans, we give names to colors that are based on their hue. This is why HSV
(Hue Saturation Value) is probably one of the most informative colorspaces. It
closely aligns with how we perceive colors. Hue refers to the color spectrum,
saturation refers to the intensity of a particular color, and value refers to the
brightness of that pixel. This is actually represented in a cylindrical format. You can
refer to a simple explanation about this at http: //infohost .nmt.edu/tcc/help/
pubs/colortheory/web/hsv.html. We can take the pixels of an image to the HSV
space and then use colorspace distances and threshold in this space thresholding to
track a given object.

Consider the following frame in the video:

Input

[190]

http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html
http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html

Chapter 9

If you run it through the colorspace filter and track the object, you will see something
like this:

Output

As you can see here, our tracker recognizes a particular object in the video based

on its color characteristics. In order to use this tracker, we need to know the color
distribution of our target object. The following code is used to track a colored object
that selects only pixels that have a certain given hue. The code is well commented, so
read the explanation mentioned previously for each line to see what's happening;:

int main(int argc, char* argvl([])

{

// Variable declarations and initializations

// Iterate until the user presses the Esc key

while (true)

{
// Initialize the output image before each iteration
outputImage = Scalar(0,0,0);

// Capture the current frame
cap >> frame;

[191]

Learning Object Tracking

// Check if 'frame' is empty
if (frame.empty())
break;

// Resize the frame

resize (frame, frame, Size (), scalingFactor, scalingFactor,
INTER_AREA);

// Convert to HSV colorspace

cvtColor (frame, hsvImage, COLOR BGR2HSV) ;

// Define the range of "blue" color in HSV colorspace
Scalar lowerLimit = Scalar(60,100,100);
Scalar upperLimit = Scalar(180,255,255);

// Threshold the HSV image to get only blue color
inRange (hsvImage, lowerLimit, upperLimit, mask) ;

// Compute bitwise-AND of input image and mask
bitwise and(frame, frame, outputImage, mask=mask) ;

// Run median filter on the output to smoothen it
medianBlur (outputImage, outputImage, 5);

// Display the input and output image
imshow ("Input", frame);
imshow ("Output", outputImage) ;

// Get the keyboard input and check if it's 'Esc’
// 30 -> wait for 30 ms
// 27 -> ASCII value of 'ESC' key
ch = waitKey(30) ;
if (ch == 27) {
break;

return 1;

Building an interactive object tracker

A colorspace-based tracker gives us the freedom to track a colored object, but we
are also constrained to a predefined color. What if we just want to randomly pick
an object? How do we build an object tracker that can learn the characteristics of the
selected object and track it automatically? This is where the CAMShift algorithm,
which stands for Continuously Adaptive Meanshift, comes into the picture. It's
basically an improved version of the Meanshift algorithm.

[192]

Chapter 9

The concept of Meanshift is actually nice and simple. Let's say we select a region of
interest, and we want our object tracker to track that object. In this region, we select
a bunch of points based on the color histogram and compute the centroid of spatial
points. If the centroid lies at the center of this region, we know that the object hasn't
moved. But if the centroid is not at the center of this region, then we know that

the object is moving in some direction. The movement of the centroid controls the
direction in which the object is moving. So, we move the bounding box of the object
to a new location so that the new centroid becomes the center of this bounding box.
Hence, this algorithm is called Meanshift because the mean (that is, the centroid) is
shifting. This way, we keep ourselves updated with the current location of the object.

However, the problem with Meanshift is that the size of the bounding box is not
allowed to change. When you move the object away from the camera, the object

will appear smaller to the human eye, but Meanshift will not take this into account.
The size of the bounding box will remain the same throughout the tracking session.
Hence, we need to use CAMShift. The advantage of CAMShift is that it can adapt
the size of the bounding box to the size of the object. Along with this, it can also keep
track of the orientation of the object.

Let's consider the following figure in which the object is highlighted:

® CAMShift Tracker

[193]

Learning Object Tracking

Now that we have selected the object, the algorithm computes the histogram
backprojection and extracts all the information. What is histogram backprojection?
It's just a way of identifying how well the image fits into our histogram model. We
compute the histogram model of a particular thing, and then use this model to find
that thing in an image. Let's move the object and see how it gets tracked:

® CAMSHhift Tracker

Looks like the object is getting tracked fairly well. Let's change the orientation,
and check whether the tracking is maintained:

® CAMSHhift Tracker

Chapter 9

As you can see, the bounding ellipse has changed its location as well as its
orientation. Let's change the perspective of the object, and see whether it's still
able to track it:

[J CAMShift Tracker

We are still good! The bounding ellipse has changed the aspect ratio to reflect the
fact that the object looks skewed now (because of the perspective transformation).
Let's take a look at the user interface functionality in the following code:

Mat image;

Point originPoint;

Rect selectedRect;

bool selectRegion = false;
int trackingFlag = 0;

// Function to track the mouse events
void onMouse (int event, int x, int y, int, void*)

{

if (selectRegion)

{

selectedRect.x MIN (x, originPoint.x) ;

selectedRect.y MIN(y, originPoint.y) ;
selectedRect.width = std::abs(x - originPoint.x) ;

selectedRect.height = std::abs(y - originPoint.y);

[195]

Learning Object Tracking

}

selectedRect &= Rect (0, 0, image.cols, image.rows) ;

switch (event)
{
case CV_EVENT LBUTTONDOWN :
originPoint = Point(x,y);
selectedRect = Rect(x,y,0,0);
selectRegion = true;
break;

case CV_EVENT LBUTTONUP:
selectRegion = false;
if (selectedRect.width > 0 && selectedRect.height > 0)

{

trackingFlag = -1;

}

break;

This function basically captures the coordinates of the rectangle that were selected
in the window. The user just needs to click on them and drag them with the mouse.

There are a set of inbuilt functions in OpenCV that help us detect these different
mouse events.

Here is the code used to perform object tracking based on CAMShift:

int main(int argc, char* argv([])

{

// Variable declaration and initialization

// Iterate until the user presses the Esc key
while (true)

// Capture the current frame

cap >> frame;

// Check if 'frame' is empty
if (frame.empty())
break;

[196]

Chapter 9

// Resize the frame

resize (frame, frame, Size (), scalingFactor, scalingFactor,
INTER_AREA);

// Clone the input frame
frame.copyTo (image) ;

// Convert to HSV colorspace
cvtColor (image, hsvImage, COLOR BGR2HSV) ;

We now have the HSV image waiting to be processed at this point. Let's go ahead
and see how we can use our thresholds to process this image:

if (trackingFlag)

{

// Check for all the values in 'hsvimage' that are
within the specified range

// and put the result in 'mask’

inRange (hsvImage, Scalar (0, minSaturation, minValue),
Scalar (180, 256, maxValue), mask) ;

// Mix the specified channels

int channels[] = {0, 0};

hueImage.create (hsvimage.size (), hsvImage.depth()) ;
mixChannels (&hsvImage, 1, &hueImage, 1, channels, 1);

if (trackingFlag < 0)
{
// Create images based on selected regions of interest

Mat roi (hueImage, selectedRect), maskroi (mask,
selectedRect) ;

// Compute the histogram and normalize it

calcHist (&roi, 1, 0, maskroi, hist, 1, &histSize,
&histRanges) ;

normalize (hist, hist, 0, 255, CV_MINMAX) ;

trackingRect = selectedRect;

trackingFlag 1;

[197]

Learning Object Tracking

As you can see here, we use the HSV image to compute the histogram of the region.
We use our thresholds to locate the required color in the HSV spectrum and then
filter out the image based on that. Let's go ahead and see how we can compute the
histogram backprojection:

// Compute the histogram backprojection
calcBackProject (&hueImage, 1, 0, hist, backproj,
&histRanges) ;
backproj &= mask;
RotatedRect rotatedTrackingRect = CamShift (backproj,
trackingRect, TermCriteria (CV_TERMCRIT EPS |
CV_TERMCRIT ITER, 10, 1));

// Check if the area of trackingRect is too small

if (trackingRect.area () <= 1)

{
// Use an offset value to make sure the

trackingRect has a minimum size

int cols = backproj.cols, rows = backproj.rows;
int offset = MIN(rows, cols) + 1;
trackingRect = Rect (trackingRect.x - offset,
trackingRect.y - offset, trackingRect.x + offset,
trackingRect.y + offset) & Rect(0, 0, cols, rows);

}

We are now ready to display the results. Using the rotated rectangle, let's draw an
ellipse around our region of interest:

// Draw the ellipse on top of the image
ellipse(image, rotatedTrackingRect, Scalar(0,255,0), 3,

CV_AR) ;

}

// BApply the 'negative' effect on the selected region of
interest

if (selectRegion && selectedRect.width > 0 && selectedRect.
height > 0)

{

Mat roi(image, selectedRect) ;
bitwise not (roi, roi);

// Display the output image
imshow (windowName, image) ;

[198]

Chapter 9

// Get the keyboard input and check if it's 'Esc’
// 27 -> ASCII value of 'Esc' key
ch = waitKey(30) ;
if (ch == 27) {
break;

return 1;

Detecting points using the Harris corner
detector

Corner detection is a technique used to detect interest points in the image. These
interest points are also called feature points or simply features in Computer Vision
terminology. A corner is basically an intersection of two edges. An interest point
is basically something that can be uniquely detected in an image. A corner is a
particular case of an interest point. These interest points help us characterize an
image. These points are used extensively in applications, such as object tracking,
image classification, visual search, and so on. Since we know that the corners are
interesting, let's see how we can detect them.

In Computer Vision, there is a popular corner detection technique called the Harris
corner detector. We construct a 2 x 2 matrix based on partial derivatives of the
grayscale image, and then analyze the eigenvalues. Now what does this mean? Well,
let's dissect it so that we can understand it better. Let's consider a small patch in the
image. Our goal is to check whether this patch has a corner in it. So, we consider all
the neighboring patches and compute the intensity difference between our patch
and all those neighboring patches. If the difference is high in all directions, then we
know that our patch has a corner in it. This is actually an oversimplification of the
actual algorithm, but it covers the gist. If you want to understand the underlying
mathematical details, you can take a look at the original paper by Harris and
Stephens at http://www.bmva.org/bmvc/1988/avc-88-023.pdf. A corner

point is a point where both the eigenvalues would have large values.

[199]

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Learning Object Tracking

If we run the Harris corner detector, it will look like this:

Harris Corner Detector

As you can see, the green circles on the TV remote are the detected corners. This
will change based on the parameters you choose for the detector. If you modify the
parameters, you can see that more points might get detected. If you make it strict,
then you might not be able to detect soft corners. Let's take a look at the following
code to detect Harris corners:

int main(int argc, char* argv([])

{

// Variable declaration and initialization

// Iterate until the user presses the Esc key

while (true)

{

// Capture the current frame
cap >> frame;

// Resize the frame
resize (frame, frame, Size(), scalingFactor,

INTER_AREA) ;

dst = Mat::zeros(frame.size(), CV_32FC1);

scalingFactor,

[200]

Chapter 9

// Convert to grayscale
cvtColor (frame, frameGray, COLOR BGR2GRAY) ;

// Detecting corners

cornerHarris (frameGray, dst, blockSize, apertureSize, k,
BORDER_DEFAULT);

// Normalizing

normalize (dst, dst norm, 0, 255, NORM MINMAX, CV 32FC1,
Mat () ; - - -

convertScaleAbs (dst norm, dst norm scaled) ;

We converted the image to grayscale and detected corners using our parameters.
You can find the complete code in the . cpp files. These parameters play an important
role in the number of points that will be detected. You can check out the OpenCV

documentation of the Harris corner detector at http://docs.opencv.org/2.4/
modules/imgproc/doc/feature detection.html?highlight=cornerharris#v
oid cornerHarris (InputArray src, OutputArray dst, int blockSize, int
ksize, double k, int borderType).

We now have all the information that we need. Let's go ahead and draw circles
around our corners to display the results:

// Drawing a circle around each corner
for(int j = 0; j < dst_norm.rows ; Jj++)

{

for(int 1 = 0; 1 < dst_norm.cols; i++)

{

if ((int)dst _norm.at<float>(j,1i) > thresh)

{

circle(frame, Point(i, j), 8, Scalar(0,255,0), 2,

// Showing the result
imshow (windowName, frame) ;

// Get the keyboard input and check if it's 'Esc'
// 27 -> ASCII value of 'Esc' key
ch = waitKey(10) ;
if (ch == 27) {
break;

}

// Release the video capture object

[201]

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html

Learning Object Tracking

cap.release() ;

// Close all windows
destroyAllWindows () ;

return 1;

}

As you can see, this code takes a blockSize input argument. Depending on the size
you choose, the performance will vary. Start with a value of 4 and play around with
it to see what happens.

Shi-Tomasi Corner Detector

The Harris corner detector performs well in many cases, but it can still be improved.
Around six years after the original paper by Harris and Stephens, Shi-Tomasi came
up with something better and they called it Good Features To Track. You can read the
original paper at: http://www.ai.mit.edu/courses/6.891/handouts/shi94good.
pdf. They used a different scoring function to improve the overall quality. Using this
method, we can find the N strongest corners in the given image. This is very useful
when we don't want to use every single corner to extract information from the image.
As discussed earlier, a good interest point detector is very useful in applications,
such as object tracking, object recognition, image search, and so on.

If you apply the Shi-Tomasi corner detector to an image, you will see something
like this:

Feature points

[202]

http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf

Chapter 9

As you can see here, all the important points in the frame are captured. Let's take a
look at the following code to track these features:

int main(int argc, char* argv([])

{

// Variable declaration and initialization

// Iterate until the user presses the Esc key
while (true)

{

// Capture the current frame
cap >> frame;

// Resize the frame
resize (frame, frame, Size(), scalingFactor, scalingFactor,
INTER_AREA) ;

// Convert to grayscale
cvtColor (frame, frameGray, COLOR_BGR2GRAY) ;

// Initialize the parameters for Shi-Tomasi algorithm
vector<Point2f> corners;

double qualityThreshold = 0.02;

double minDist = 15;

int blockSize = 5;

bool useHarrisDetector = false;

double k = 0.07;

// Clone the input frame
Mat frameCopy;
frameCopy = frame.clone() ;

// Rpply corner detection

goodFeaturesToTrack (frameGray, corners, numCorners,
qualityThreshold, minDist, Mat (), blockSize,
useHarrisDetector, k);

We extracted the frame and used goodFeaturesToTrack to detect the corners. It's
important to understand that the number of corners detected will depend on our
choice of parameters. You can find a detailed explanation at http: //docs.opencv.
org/2.4/modules/imgproc/doc/feature detection.html?highlight=goodfe
aturestotrack#goodfeaturestotrack. Let's go ahead and draw circles on these
points to display the output image:

// Parameters for the circles to display the corners
int radius = 8; // radius of the cirles

int thickness = 2; // thickness of the circles

int lineType = 8;

[203]

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#goodfeaturestotrack
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#goodfeaturestotrack
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#goodfeaturestotrack

Learning Object Tracking

// Draw the detected corners using circles
for(size t 1 = 0; 1 < corners.size(); i++)

{

Scalar color = Scalar (rng.uniform(0,255),
rng.uniform(0,255), rng.uniform(0,255));

circle (frameCopy, corners[i], radius, color,
thickness, lineType, 0);

}

/// Show what you got
imshow (windowName, frameCopy) ;

// Get the keyboard input and check if it's 'Esc’
// 27 -> ASCII value of 'Esc' key
ch = waitKey(30) ;
if (ch == 27) {
break;
}

}

// Release the video capture object
cap.release() ;

// Close all windows
destroyAllWindows () ;

return 1;

}

This program takes a numCorners input argument. This value indicates the
maximum number of corners you want to track. Start with a value of 100 and play
around with it to see what happens. If you increase this value, you will see more
feature points getting detected.

Feature-based tracking

Feature-based tracking refers to tracking individual feature points across successive
frames in the video. The advantage here is that we don't have to detect feature points
in every single frame. We can just detect them once and keep tracking them after
that. This is more efficient as compared to running the detector on every frame. We
use a technique called optical flow to track these features. Optical flow is one of the
most popular techniques in Computer Vision. We choose a bunch of feature points,
and track them through the video stream. When we detect the feature points, we
compute the displacement vectors and show the motion of those keypoints between
consecutive frames. These vectors are called motion vectors.

[204]

Chapter 9

A motion vector for a particular point is just a directional line that indicates where
that point has moved as compared to the previous frame. Different methods are
used to detect these motion vectors. The two most popular algorithms are the
Lucas-Kanade method and Farneback algorithm.

The Lucas-Kanade method

The Lucas-Kanade method is used for sparse optical flow tracking. By sparse,

we mean that the number of feature points is relatively low. You can refer to

their original paper at http://cseweb.ucsd.edu/classes/sp02/cse252/
lucaskanade8l.pdf. We start the process by extracting the feature points. For each
feature point, we create 3 x 3 patches with the feature point at the center. We assume
that all the points within each patch will have a similar motion. We can adjust the
size of this window, depending on the problem at hand.

For each feature point in the current frame, we take the surrounding 3 x 3 patch as
our reference point. For this patch, we take a look at its neighborhood in the previous
frame to get the best match. This neighborhood is usually bigger than 3 x 3 because
we want to get the patch that's closest to the patch under consideration. Now, the
path from the center pixel of the matched patch in the previous frame to the center
pixel of the patch under consideration in the current frame will become the motion
vector. We do this for all the feature points, and extract all the motion vectors.

Let's consider the following frame:

Lucas Kanade Tracker

[205]

http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf

Learning Object Tracking

We need to add some points that we want to track. Just go ahead and click on a
bunch of points on this window with your mouse:

Lucas Kanade Tracker

If I move to a different position, you will see that the points are still being tracked
correctly within a small margin of error:

Lucas Kanade Tracker

[206]

Chapter 9

Let's add a lot of points and see what happens:

Lucas Kanade Tracker

As you can see, it will keep tracking those points. However, you will notice

that some of the points will be dropped in between because of factors, such as
prominence, speed of the movement, and so on. If you want to play around with
it, you can just keep adding more points to it. You can also allow the user to select
a region of interest in the input video. You can then extract feature points from this
region of interest and track the object by drawing the bounding box. It will be a
fun exercise!

Here is the code used to perform Lucas-Kanade-based tracking;:

int main(int argc, char* argv([])

{

// Variable declaration and initialization

// Iterate until the user hits the Esc key
while (true)
{

// Capture the current frame

cap >> frame;

// Check if the frame is empty
if (frame.empty())

[207]

Learning Object Tracking

break;

// Resize the frame

resize (frame, frame, Size (), scalingFactor, scalingFactor,
INTER_AREA);

// Copy the input frame
frame.copyTo (image) ;

// Convert the image to grayscale
cvtColor (image, curGrayImage, COLOR BGR2GRAY) ;

// Check if there are points to track
if (!trackingPoints [0] .empty ())
{

// Status vector to indicate whether the flow for the
corresponding features has been found
vector<uchar> statusVector;

// Error vector to indicate the error for the
corresponding feature

vector<float> errorVector;

// Check if previous image is empty
if (prevGrayImage.empty())

{
}

curGrayImage.copyTo (prevGrayImage) ;

// Calculate the optical flow using Lucas-Kanade algorithm

calcOpticalFlowPyrLK (prevGrayImage, curGraylmage,
trackingPoints [0], trackingPoints[1l], statusVector, errorVector,
windowSize, 3, terminationCriteria, 0, 0.001);

We use the current image and the previous image to compute the optical flow
information. Needless to say that the quality of the output will depend on the
parameters you have chosen. You can find more details about the parameters at
http://docs.opencv.org/2.4/modules/video/doc/motion analysis and
object_tracking.html#calcopticalflowpyrlk. To increase the quality and
robustness, we need to filter out the points that are very close to each other because
they do not add the new information. Let's go ahead and do that:

int count = 0;

// Minimum distance between any two tracking points
int minDist = 7;

[208]

http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html#calcopticalflowpyrlk
http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html#calcopticalflowpyrlk

Chapter 9

for(int i1=0; i < trackingPoints[1l].size(); i++)

{

if (pointTrackingFlag)

{

/* If the new point is within 'minDist' distance
from an existing point, it will not be tracked */
if (norm(currentPoint - trackingPoints[1] [i]) <=

{

minDist)

pointTrackingFlag = false;
continue;

// Check if the status vector is good
if (!statusVector[i])
continue;

trackingPoints[1] [count++] = trackingPoints[1] [i];

// Draw a filled circle for each of the tracking points
int radius = 8;
int thickness = 2;
int lineType = 8;
circle(image, trackingPoints[1][i], radius,
Scalar(0,255,0), thickness, lineType) ;

trackingPoints[1] .resize (count) ;

}

We now have the tracking points. The next step is to refine the location of these
points. What exactly does "refine" mean in this context? To increase the speed of
computation, there is some level of quantization involved. In layman's terms, you
can think of it as "rounding off". Now that we have the approximate region, we can
refine the location of the point within that region to get a more accurate outcome.
Let's go ahead and do this:

// Refining the location of the feature points
if (pointTrackingFlag && trackingPoints[1l].size() <
maxNumPoints)

{

vector<Point2f> tempPoints;
tempPoints.push back (currentPoint) ;

// Function to refine the location of the corners to
subpixel accuracy.

[209]

Learning Object Tracking

// Here, 'pixel' refers to the image patch of size
'windowSize' and not the actual image pixel

cornerSubPix (curGrayImage, tempPoints, windowSize,
cvSize(-1,-1), terminationCriteria);

trackingPoints[1] .push back (tempPoints[0]) ;
pointTrackingFlag = false;

// Display the image with the tracking points
imshow (windowName, image) ;

// Check if the user pressed the Esc key
char ch = waitKey(10) ;
if (ch == 27)

break;

// Swap the 'points' vectors to update 'previous' to
'current'
std: :swap (trackingPoints[1], trackingPoints[0]) ;

// Swap the images to update previous image to current image
cv: :swap (prevGrayImage, curGrayImage) ;

return 1;

The Farneback algorithm

Gunnar Farneback proposed this optical flow algorithm and it's used for dense
tracking. Dense tracking is used extensively in robotics, augmented reality, 3D
mapping, and so on. You can check out the original paper at http://www.diva-
portal.org/smash/get/diva2:273847/FULLTEXTO01.pdf. The Lucas-Kanade
method is a sparse technique, which means that we only need to process some pixels
in the entire image. The Farneback algorithm, on the other hand, is a dense technique
that requires us to process all the pixels in the given image. So, obviously, there is

a trade-off here. Dense techniques are more accurate, but they are slower. Sparse
techniques are less accurate, but they are faster. For real-time applications, people
tend to prefer sparse techniques. For applications where time and complexity is not a
factor, people prefer dense techniques to extract finer details.

[210]

http://www.diva-portal.org/smash/get/diva2:273847/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:273847/FULLTEXT01.pdf

Chapter 9

In his paper, Farneback describes a method for dense optical flow estimation

based on polynomial expansion for two frames. Our goal is to estimate the motion
between these two frames, and it's basically a three-step process. In the first step,
each neighborhood in both the frames is approximated by polynomials. In this case,
we are only interested in quadratic polynomials. The next step is to construct a new
signal by global displacement. Now that each neighborhood is approximated by

a polynomial, we need to see what happens if this polynomial undergoes an ideal
translation. The last step is to compute the global displacement by equating the
coefficients in the yields of these quadratic polynomials.

Now, how is this feasible? If you think about it, we are assuming that an entire signal
is a single polynomial and there is a global translation relating the two signals. This
is not a realistic scenario. So, what are we looking for? Well, our goal is to find out
whether these errors are small enough so that we can build a useful algorithm that
can track the features.

Let's take a look at the following static image:

Optical Flow

o ¢ o oS CRERTPC NSNS IEEP . o s ¢ ¢ 4 4 4 @
I

W URERIEIREEEE UL L T (IR R PR
¥ TR IE TR RS PR R Y

DRSS TR
RIS

’
1 .
.

TIRERY U RS RS AR SRR AR PSP
e o +BEEEEEL 4 4 4 s e R Bl v SR o e e e

RS ORI ARER SRS TR Y

..

[211]

Learning Object Tracking

If I move sideways, you can see that the motion vectors point in the horizontal
direction. They simply track the movement of my head:

Optical Flow

If I move away from the webcam, you can see that the motion vectors point in a
direction that is perpendicular to the image plane:

Optical Flow

R R R A e

oo o SRR . ST

Chapter 9

Here is the code used to perform optical flow-based tracking using the

Farneback algorithm:

int main (int,

{

char** argv)

// Variable declaration and initialization

// Iterate until the user presses the Esc key

while (true)

{

// Capture the current frame

cap >> frame;

if (frame.empty ())
break;

// Resize the frame

resize (frame,
INTER_AREA) ;

frame,

// Convert to grayscale
cvtColor (frame, curGray,
// Check if the image is
if (prevGray.data)

{

Size (),

scalingFactor, scalingFactor,

COLOR_BGR2GRAY) ;

valid

pyrScale,

numLevels,

// Initialize parameters for the optical flow
0.5;

numLevels = 3;

15;

numIterations = 3;

algorithm
float pyrScale =
int
int windowSize =
int
int neighborhoodSize = 5;
float stdDeviation = 1.2;

// Calculate optical
calcOpticalFlowFarneback (prevGray,
windowSize, numIterations,

flow map using Farneback algorithm

curGray, flowImage,
neighborhoodSize,

stdDeviation, OPTFLOW USE_INITIAL FLOW) ;

[213]

Learning Object Tracking

As you can see, we use the Farneback algorithm to compute the optical flow vectors.
The calcOpticalFlowFarneback input parameters are important when it comes to
the quality of tracking. You can find the details about these parameters at http://
docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis and
object_tracking.html. Let's go ahead and draw those vectors on the output image:

// Convert to 3-channel RGB
cvtColor (prevGray, flowImageGray, COLOR_GRAY2BGR) ;

// Draw the optical flow map
drawOpticalFlow (flowImage, flowImageGray) ;

// Display the output image
imshow (windowName, flowImageGray) ;

// Break out of the loop if the user presses the Esc key
ch = waitKey(10) ;
if (ch == 27)

// Swap previous image with the current image
std: :swap (prevGray, curGray) ;

return 1;

}

We used a function called drawopticalFlow to draw these optical flow vectors.
These vectors indicate the direction of the motion. Let's take a look at the function to
see how we can draw these vectors:

// Function to compute the optical flow map
void drawOpticalFlow (const Mat& flowImage, Mat& flowImageGray)

{

int stepSize 16;

Scalar color = Scalar (0, 255, 0);

// Draw the uniform grid of points on the input image along with
the motion vectors

for(int y = 0; y < flowImageGray.rows; y += stepSize)

{

for(int x = 0; x < flowImageGray.cols; x += stepSize)

{

[214]

http://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html
http://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html
http://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html

Chapter 9

// Circles to indicate the uniform grid of points

int radius = 2;

int thickness = -1;

circle (flowImageGray, Point (x,y), radius, color,
thickness) ;

// Lines to indicate the motion vectors

Point2f pt = flowImage.at<Point2f>(y, x);

line (flowImageGray, Point(x,y), Point (cvRound (x+pt.x),
cvRound (y+pt.y)), color);

}
}

Summary

In this chapter, we learned about object tracking. We learned how to use the HSV
colorspace to track colored objects. We discussed clustering techniques used

for object tracking and how we can build an interactive object tracker using the
CAMShift algorithm. We learned about corner detectors and how to track corners
in a live video. We discussed how to track features in a video using optical flow.
We also learned the concepts behind Lucas-Kanade and Farneback algorithms and
implemented them as well.

In the next chapter, we will discuss segmentation algorithms and see how we can use
them for text recognition.

[215]

10

Developing Segmentation
Algorithms for Text
Recognition

In the previous chapters, we learned about a wide range of image processing
techniques, such as thresholding, contour descriptors, and mathematical
morphology. In this chapter, we will discuss the common problems with dealing
with scanned documents, such as identifying where the text is or adjusting its
rotation. We will also learn how to combine techniques presented in the previous
chapters to solve these problems. Finally, we'll have segmented regions of text that
can be sent to an OCR (optical character recognition) library.

By the end of this chapter, you should be able to answer the following questions:

What kind of OCR applications exist?
What are the common problems while writing an OCR application?
How do we identify regions of documents?

How do we deal with problems such as skewing and other elements in the
middle of the text?

How do we use Tesseract OCR to identify the text?

[217]

Developing Segmentation Algorithms for Text Recognition

Introducing optical character recognition

Identifying text in an image is a very popular application for Computer Vision.
This process is commonly called OCR and divided into the following steps:

Text preprocessing and segmentation: During this step, the computer must
learn to deal with the image noise and rotation (skewing) and identify what
areas are candidate text areas.

Text identification: This is a process used to identify each letter in a text.
Although this is also a Computer Vision topic, we will not show you how to
do this in this book using OpenCV. Instead, we will show you how to use the
Tesseract library to do this step, since it was integrated with OpenCV 3.0. If
you are interested in learning how to do what Tesseract does all by yourself,
take a look at Mastering OpenCV, Packt Publishing, which presents a chapter
about car license plate recognition.

The preprocessing and segmentation phase can vary greatly depending on the source
of the text. Let's take a look at the common situations where preprocessing is done:

Production OCR applications with a scanner, which is a very reliable source
of text: In this scenario, the background of the image is usually white and
the document is almost aligned with the scanner margins. The content that
is being scanned basically contains text with almost no noise. This kind of
application relies on simple preprocessing techniques that can adjust the text
quickly and maintain a fast scanning pace. When writing production OCR
software, it is common to delegate identification of important text regions to
the user and create a quality pipeline for text verification and indexing.

Scanning text in a casually taken picture or in a video: This is a much more
complex scenario, as there's no indication of where the text can be. This
scenario is called Scene text recognition, and OpenCV 3.0 introduces a brand
new library to deal with it, which we will cover in Chapter 11, Text Recognition
with Tesseract. Usually, the preprocessor will use texture analysis techniques
to identify the text patterns.

Creating a production quality OCR for historical texts: Historical texts are
also scanned.

However, they have several additional problems, such as noise created by
the old paper color and usage of ink. Other common problems are decorated
letters, specific text fonts, and low-contrast content created by ink that has
been degraded over time. It's not uncommon to write specific OCR software
for documents at hand.

[218]

Chapter 10

* Scanning maps, diagrams, and charts: Maps, diagrams, and charts pose a
difficult scenario since the text is usually in any orientation and in the middle
of an image's content. For example, city names are often clustered, and ocean
names often follow country shore contour lines. Some charts are heavily
colored, with text appearing in both clear and dark tones.

OCR application strategies also vary according to the objective of the identification.
Will they be used for a full text search? Or should the text be separated in a logical
field to index a database with information for a structured search?

In this chapter, we will focus on preprocessing scanned text or text photographed by
a camera. We'll assume that the text is the main purpose of the image, such as in a
photograph, paper, or card; for example, take a look at the following parking ticket:

[219]

Developing Segmentation Algorithms for Text Recognition

We'll try to remove the common noise, deal with text rotation (if any), and crop the
possible text regions. While most OCR APIs already do these things automatically
and probably with state-of-the-art algorithms, it still worth knowing how things
happen under the hood. This will allow you to better understand most OCR APIs'
parameters and will give you a better knowledge of potential OCR problems that
you may face.

The preprocessing step

Software that identifies letters do so by comparing text with a previously recorded
data. Classification results can be improved greatly if the input text is clear, if the
letters are in a vertical position, and if there are no other elements, such as images
that are sent to the classification software. In this section, we'll learn how to adjust
text. This stage is called preprocessing.

Thresholding the image

We usually start the preprocessing stage by thresholding the image. This eliminates
all the color information. Most OpenCV functions require information to be the
written in white and the background to be black. So, let's start with creating a
threshold function to match this criterion:

#include <opencv2/opencv.hpp>
#include <vectors>

using namespace std;
using namespace cv;

Mat binarize (Mat input)
{
//Uses otsu to threshold the input image
Mat binaryImage;
cvtColor (input, input, CV_BGR2GRAY) ;
threshold (input, binaryImage, 0, 255, THRESH OTSU) ;
//Count the number of black and white pixels
int white = countNonZero (binaryImage) ;
int black = binaryImage.size () .area() - white;
//If the image is mostly white (white background), invert it
return white < black ? binaryImage : ~binaryImage;

[220]

Chapter 10

The binarize function applies a threshold, similar to what we did in Chapter 4,
Delving into Histograms and Filters. However, we use the ot su method by passing
THRESH_OTSU to the fourth parameter of the function.

The ot su method maximizes the inter-class variance. Since a threshold creates only
two classes (the black and white pixels), this is the same as minimizing the intra-class
variance. The method works using the image histogram. Then, it iterates through all
the possible threshold values and calculates a measure of spread for the pixel values
on each side of the threshold, that is, the pixels that are either in the background or
in the foreground of the image. The purpose is to find the threshold value where the
sum of both the spreads is at its minimum.

After the thresholding is done, the function counts the number of white pixels in the
image. The black pixels are simply the total number of pixels in the image, given by
the image area minus the white pixel count.

Since text is usually written on a plain background, we will check whether there are
more white pixels than black. In this case, we are dealing with black text over a white
background, so we invert the image for further processing.

The result of the thresholding process with the parking ticket image is shown in the
following image:

(i)

Leve este cartso com voc8, pois ele 6 o
comprovante para a retirada do velculo.

Nossa responsabitidade ndo abrange
objetos ou pertences deixados no inferor
da veiculo, assim coma eventuais

m quebras sioldefeitos mecanicos, 4 que

razdes operacionais nosso
B e, cobo mpossibiitados da
verificartais itens.

O usudrio & responsével pelos danos que

2 yier a causar a outro veiculo ou as

i instatagdes e equipamentos do
estacionamento.

No caso de dano ou extravio deste cartao,
comunique-se imediatamente com a

}‘ administragéo do estacionamento, sendo

necessario comprovar a propriedade do

veiculo e o pagamento de R$ 20,0
referente a um novo carao.

3§ Kameda Parking®
‘ automagdo de sst_acimamen\cs

www.kamedaparking.com

[221]

Developing Segmentation Algorithms for Text Recognition

Text segmentation

The next step is to find where the text is located and extract it. There are two
common strategies to do this, which are as follows:

* Using the connected component analysis, we search for groups of connected
pixels in the image. This is the technique that we will use in this chapter.

* Use classifiers to search for a previously trained letter texture pattern.
Texture features such as Haralick features and wavelet transforms are often
used. The other option is to identify maximally stable extremal regions
(MSERsS) in this task. This approach is more robust for text in a complex
background and will be studied in the next chapter. You can read about
Haralick features on his own website at http://haralick.org/journals/
TexturalFeatures.pdf.

Creating connected areas

If you take a closer look at the image, you'll notice that the letters are always grouped
together in blocks that are formed by each of text paragraphs. So, how do we detect
and remove these blocks?

The first step is to make these blocks even more evident. We can do this using the
dilation morphological operator. In Chapter 8, Video Surveillance, Background Modeling,
and Morphological Operations, we learned how dilation makes the image elements
thicker. Let's take a look at the following code snippet that does the trick:

Mat kernel = getStructuringElement (MORPH CROSS, Size(3,3));
Mat dilated;

dilate (input, dilated, kernel, cv::Point(-1, -1), 5);
imshow ("Dilated", dilated) ;

In this code, we start by creating a 3 x 3 cross kernel that will be used in the
morphological operation. Then, we apply the dilation five times, centered on this
kernel. The exact kernel size and number of times vary according to the situation.
Just make sure that the values glue all the letters in the same line together.

The result of this operation is as follows:

[222]

http://haralick.org/journals/TexturalFeatures.pdf
http://haralick.org/journals/TexturalFeatures.pdf

Chapter 10

| Dilated — O *

Notice that now we have huge white blocks. They exactly match each paragraph
of the text and also match other nontextual elements such as images or the
border noise.

M The ticket image that comes with the code is a low resolution image. OCR
Q engines usually work with high resolution images (200 or 300 DPI), so it
may be necessary to apply dilation more than five times.

[223]

Developing Segmentation Algorithms for Text Recognition

Identifying paragraph blocks

The next step is to perform connect component analysis to find blocks that
correspond to paragraphs. OpenCV has a function to do this, which we previously
used in Chapter 5, Automated Optical Inspection, Object Segmentation, and Detection. It's
the f£indContours function:

vector<vector<Point> > contours;
findContours (dilated, contours, RETR EXTERNAL, CHAIN APPROX SIMPLE) ;

In the first parameter, we pass our dilated image. The second parameter is the vector
of detected contours. Then we use the option to retrieve only external contours and
use simple approximation. The image contours are presented in the following figure.
Each tone of gray represents a different contour:

5| Contours - [m} X

[224]

Chapter 10

The last step is to identify the minimum rotated bounding rectangle of each contour.
OpenCV provides a handy function for this operation called minAreaRect. This
function receives a vector of arbitrary points and returns a Roundedrect that
contains the bounding box.

This is also a good opportunity to discard unwanted rectangles, that is, rectangles
that are obviously not text. Since we are making a software for OCR, we'll assume
that the text contains a group of letters together. With this assumption, we'll discard
text in the following situations:

* The rectangle width or size is too small, that is, smaller than 20 pixels.
This will help you discard border noise and other small artifacts.

* The rectangles of the images that have a width/height proportion smaller
than two. That is, rectangles that resemble a square, such as image icons, or
ones that are much taller and larger will also be discarded.

There's a little caveat in the second condition. Since we are dealing with rotated
bounding boxes, we must check whether the bounding box angle is not smaller than
45 degrees. If that's the case, the text will be vertically rotated, so the proportion that
must be taken into account is the height/width. Let's take a look at this code:

//For each contour
vector<RotatedRect> areas;
for (auto contour : contours)
//Find it's rotated rect
auto box = minAreaRect (contour) ;

//Discard very small boxes
if (box.size.width < 20 || box.size.height < 20)
continue;

//Discard squares shaped boxes and boxes

//higher than larger

double proportion = box.angle < -45.0 ?
box.size.height / box.size.width :
box.size.width / box.size.height;

if (proportion < 2)
continue;

//Add the box

areas.push back (box) ;

[225]

Developing Segmentation Algorithms for Text Recognition

Let's see the boxes that are selected by this algorithm:

5| Rotated Rect Areas — O *

L—@T @ve este cartdo com vocs, pois ele 6 o
comprovante para a retirada do veiculo.

No_ssa responsabitidade nf@o abrange
objetos ou partences deixados no interior
lil do veiculo, assim como eventuais

quebras efou defeitos mecanicos, Ja que
por tazdes operacionais nossos

funcionarios estdo impossibilitados de
verificar tais itens.

O usudrio é responsével pelos danos que
vier a causar a outro veiculo ou as
instafagbes e equipamentos do
estacionamento. :

Wo caso de dano ou extravio deste cartdo,
comunique-se imediataments com a
administragéio do estacionamento, sendo
necessario comprovar a propriedade do| |
veiculo e o pagamento de R$ 20,00
\riferente 4 um novo canao. J

Karmeda Parking®

automagiio de sstacienamentos
www.karnedaparkirg.com

This is certainly a good result!

[226]

Chapter 10

Notice that the algorithm described in condition 2 will also discard single letters.
This is not a big issue, since we are creating an OCR preprocessor, and single
symbols are usually meaningless with the context information. One example of

such a case is the page numbers. They will be discarded with this process since they
usually appear alone at the bottom of the page and will definitely fail the size or
proportion text. However, this will not be a problem, as after the text passes through
the OCR, there will be a huge text file with no page division at all.

We'll place this code in a function with this signature:

vector<RotatedRect> findTextAreas (Mat input)

Text extraction and skew adjustment

Now, all we need to do is extract the text and adjust text skew. This is done by the
deskewAndCrop function, as follows:

Mat deskewAndCrop (Mat input, const RotatedRecté& box)
{

double angle = box.angle;

Size2f size = box.size;

//Adjust the box angle
if (angle < -45.0)
{
angle += 90.0;
std: :swap (size.width, size.height) ;

//Rotate the text according to the angle

Mat transform = getRotationMatrix2D (box.center, angle, 1.0);

Mat rotated;

warpAffine (input, rotated, transform, input.size(), INTER CUBIC) ;

//Crop the result

Mat cropped;

getRectSubPix (rotated, size, box.center, cropped) ;

copyMakeBorder (cropped, cropped, 10,10,10,10,BORDER CONSTANT,
Scalar(0)) ;

return cropped;

[227]

Developing Segmentation Algorithms for Text Recognition

First, we start by reading the desired region, angle, and size. As mentioned earlier,
the angle can be less than 45 degrees. This means that the text is vertically aligned,
so we need to add 90 degrees to the rotation angle and switch the width and height
properties.

Next, we need to rotate the text. First, we start by creating a 2D affine transformation
matrix that describes the rotation. We do this using the getRotationMatrix2D
OpenCV function. This function takes the following three parameters:

CENTER: This is the central position of the rotation. The rotation will pivot
around this center. In our case, we use the box center.

aNGLE: This is the rotation angle. If the angle is negative, the rotation will
occur in the clockwise direction.

scaLE: This is an isotropic scale factor. We use 1.0 as we want to keep the
box's original scale untouched.

The rotation itself is made using the warpAffine function. This function takes four
mandatory arguments, which are as follows:

Src: This is the input mat array to be transformed.
DST: This is the destination mat array.

M: This is a transformation matrix. This matrix is a 2 x 3 affine transformation
matrix. This may be a translation, scale, or rotation matrix. In our case, we
just use the matrix that we recently created.

s1zk: This is the size of the output image. We will generate an image with the
same size as that of our input image.

The other three optional arguments are as follows:

FLAGS: This indicates how the image should be interpolated. We use
BICUBIC_INTERPOLATION for better quality. The default value is LINEAR
INTERPOLATION.

BORDER: This is the border mode. We use the default BORDER CONSTANT.

BORDER VALUE: This is the color of the border. We use the default value,
which is black.

[228]

Chapter 10

Then, we use the getRectSubPix function. After we rotate our image, we need to
crop the rectangular area of our bounding box. This function takes four mandatory
arguments and one optional, and returns the cropped image:

* IMAGE: This is the image to be cropped.

* s1zE: Thisis a cv: :Size object that describes the width and height of the box
to be cropped.

* CENTER: This is the central pixel of the area to be cropped. Notice that as we
rotate around the center, this point remains the same.

* paTCH: This is the destination image.

e pATCH_TYPE: This is the depth of the destination image. We use the default
value, representing the same depth as that of the source image.

The final step is done by the copyMakeBorder function. This function adds a border
around the image. This is important because the classification stage usually expects
a margin around the text. The function parameters are very simple: the input and
output images, the border thickness around the top, bottom, left, and right of the
image, and the color of the new border.

For the card image, the following images will be generated:

5| Cropped text - O * 5| Cropped text - O *

No caso de dano ou extravio deste cartao,
comunique-se imediatamente com a
administragfio do estacionamento, sendo

Kameda Parking®

de sstacionamentos

www.kamedaparking.com necessanio comprovar a propriedade do
veiculo e o pagamento de R$ 20,00

referente a um novo cartdo.

5| Cropped text - O *

O usudrio é responsavel pelos danos que 1 Cropped text
Vier & ocauser & outro veiculo ou &s Nossa responsabilidade ndo abrange
L;?;;éﬁgg:,fwe equipamentos do objetos ou pertences deixados no inferior

. do veiculo, assim como eventuais
_ quebras efou defeitos mecanicos, ja que
2 Cropped text - o X por razdes operacionais nossos

Leve este cartio com voc, pois ele 6 o funcionarios estio impossibilitados de
comprovante para a retirada do veiculo.

verificar taisitens.
B Cropped text — O =

[229]

Developing Segmentation Algorithms for Text Recognition

Now, it's time to put every function together. Let's present the main method that will
do the following;:

* Load the ticket image

e (Call our binarization function
* Find all text regions

* Show each region in a window:

int main(int argc, char* argv([])

{
//Loads the ticket image and binarize it
Mat ticket = binarize(imread("ticket.png")) ;
auto regions = findTextAreas (ticket) ;

//For each region
for (auto& region : regions)

//Crop

auto cropped = deskewAndCrop (ticket, region) ;
//Show

imshow ("Cropped text", cropped) ;

waitKey (0) ;

destroyWindow ("Border Skew") ;

}
}

For the complete source code, take a look at the segment . cpp
= file that comes along with this book.

Installing Tesseract OCR on your
operating system

Tesseract is an open source OCR engine originally developed by Hewlett-Packard

Laboratories, Bristol and Hewlett-Packard Co. It has all the code licenses under the
Apache License and is hosted on GitHub at https://github.com/tesseract-ocr.

It is considered one of the most accurate OCR engines that is available. It can
read a wide variety of image formats and can convert text written in more than
60 languages.

In this session, we will teach you how to install Tesseract on Windows or Mac.
Since there are lots of Linux distributions, we will not teach you how to install
on this operating system.

[230]

https://github.com/tesseract-ocr

Chapter 10

Normally, Tesseract offers installation packages in your package repository,
so before you compile Tesseract, just search there.

Installing Tesseract on Windows

Although Tesseract is hosted on GitHub, its latest Windows installer is still
available in the old repository on Google Code. The latest installer version is
3.02.02, and it's recommended that you use the installer. Download the installer
from https://code.google.com/p/tesseract-ocr/downloads/list.

Once you have downloaded the installer, perform these steps:

1. Look for the tesseract-ocr-setup-3.02.02.exe and tesseract-
3.02.02-win32-1lib-include-dirs.zip files, and download and
run the executable installer

Pessoal _ O X

{3 Downloads - tesseract-oc. X
« C' A & https://code.google.com/p/tesseract-ocr/downloads/list By % =
I Apps v Bookmarks | Netflix [fJ Facebook @ Loja PontoV - Admin %} Graphics Black Book B, PirateBay [l YIFY Torrent » [Outros favoritos

ViniGodoy@gmail.com v | My favorites v | Profile | Sign out

An OCR Engine that was developed at HP Labs between 1985 and 1995... and now at .
Google Search projects

_.a tesseract-ocr

Project Home Downloads Wiki Issues Source | Export to GitHub

READ-ONLY: This project has been archived. For more information see this post.

Search | Curentdownloads ¥ |for Search
1-100 of 149 Next
Filename v Summary + Labels v Uploaded ¥ ReleaseDate v Size ¥ DownloadCount v ...
tesseract-ocr-3.02 gre tar gz Ancient Greek Language data for Apr2013 Apr 2013 33MB 75951
Tesseract 3.02.02
tesseract-ocr-3.02 epo_alt tar.gz Esperanto alternative language data Mov 2012 Nov 2012 1.4 MB 16674
for Tesseract 3.02
< tesseract-3 02 02-win32-ib-include-dirs zip VC++ libraries of Tesseract OCR Nov 2012 Nov 2012 280 MB 131374
3.02.02 (32bit) Festur=d
<x tesseract-ocrsetup-3.02.02 exe Windows installer of tesseract-ocr Nov 2012 Nov 2012 12.9 MB 358199
3.02.02 (including English language
data) Festured
tesseract-ocr-3.02.02 tar gz Tesseract OCR 3.02.02 Source Nov 2012 Nov 2012 3.7 MB 234344

Festured

2. To get past the welcome screen, read and accept the license agreement.
3. Choose between installing for all users in the computer or just for your user.

4. Then, choose a suitable location for your installation.

[231]

https://code.google.com/p/tesseract-ocr/downloads/list

Developing Segmentation Algorithms for Text Recognition

5. Choose the folder of the installation. Tesseract points to the program files
folder by default, since it has a command-line interface. You can change it to
a more suitable folder, if you want. Then, go to the next screen:

‘Y,) Tesseract-OCR 3.02.02 — b4

e Choose Components
Choose which features of Tesseract-0CR 3.02.02 for Windows
you want to install.

Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.

Select components to install: : ._
[v] shortouts creation
Reqgistry setttings

i [v| Tesseract development files | «

[+~ & Language data

Description
Space required:; 56.5MB

6. Make sure you select Tesseract development files. This will install the
Leptonica library files and source code. You can also choose language data
for your native language. Tesseract has English selected by default.

7. The installer will download and set up Tesseract dependencies.

. To test the Tesseract installation, you can run it via the command
R

line. For example, to run Tesseract on the parkingTicket .png
file, you can run the following command:

tesseract parkingTicket.png ticket.txt

[232]

Chapter 10

8. Now, go back to the downloaded tesseract-3.02.02-win32-1ib-
include-dirs.zip file. Unzip this file and copy the 1ib and add folders to
your tesseract installation folder. There will be folders with the same name
in this folder, but that's normal. This file will include tesseract files and
libraries in the Tesseract installation. Ironically, Tesseract 1ibs and d11s do
not come with the installer.

Setting up Tesseract in Visual Studio

Since Visual Studio 2010 is the recommended IDE for Windows developers with
Tesseract, it's important to set this up correctly.

The setup process is quite simple, and it's divided into the following three steps:

1. Adjust the import and library paths.
2. Add the libraries to the linker input.
3. Add Tesseract d11s to the windows path.

Let's see each of these steps in the following sections.

Setting the import and library paths

The import path tells Visual Studio where to search for the .h files that will be
available when an #include directive is performed in your code.

In solution explorer, right-click on your project and click on properties.
Then, select configuration properties and VC++ Directories.

If you have created a new project from scratch, make sure you
added at least one c++ file to the project to let Visual know
’ that this is a C++ project.

[233]

Developing Segmentation Algorithms for Text Recognition

Next, click on Include Directories. An arrow appears. Click on this arrow and then
click on Edit:

Configuration: | Active(Debug) ~ | Platform: | Active(Win32) ~ Configuration Manager...
Common Properties v General

w Configuration Properties Executable Directories S(VClnstallDir)bin; 5(Windows5DK_ExecutablePath_xB86);5(VSInstallDi
General I:\Projetos\libs\Tesseract-OCR\incIude\leptonica;S(IncIudePathJE
Debugging Reference Directories <Edit...>
VC++ Directories Library Directories W
C._."C+ * Library WinRT Directories S(WindowsSDK_MetadataPath)
Linker Source Directories S(VClnstallDinatlmfc\src\mfe; 5(VCInstallDir)atimfc\srcmfem; S(VCI

Manifest Tool

XML Document Generator
Browse Information

Build Events

Custom Build Step

Code Analysis

Exclude Directories S(VClnstallDininclude S(VClnstallDir)atimfchinclude S(WindowsSDK]

Include Directories

Path to use when searching for include files while building a VC++ project. Corresponds to environment variable
< 3| | INCLUDE.

oK Cancelar Aplicar

You must add two directories to this list:

TesseractInstallPath\include
TesseractInstallPath\include\leptonica

Replace the TesseractInstallPath with your Tesseract installation path; for
example, c:\Program Files\Tesseract-OCR.

Then, click on Library Directories, click on the arrow, and then on Edit, just like you
did for Include Directories. You must add one directory to the list:

TesseractInstallPath\1lib

[234]

Chapter 10

Configuring the linker

While still on the Property page, go to Linker | Input. Edit the Additional
Dependencies row and include two libraries:

libleptl68.1ib
libtesseract302.1lib

Since the numbers in the 1ib name refer to the file version,
the library names can change if you install a different
version of Tesseract. To do this, just open the 1ib path in

Windows Explorer.
/~~ Unfortunately, the debug libraries (the ones that end with

a d letter) do not work out of the box with Tesseract. If you
really need to use them, you need to compile Tesseract and
Leptonica yourself.

Adding the libraries to the windows path

You must add two library files to the windows path. The first is located directly

in TesseractInstallPath and itis called 1iblept168.dl1l. The second one is in
TesseractInstallPath\1lib and itis called 1ibtesseract302.d11l. There are two
ways to do this:

* Copy these files to a location where Visual Studio generates your executable
file. This will not add the files to the Windows path but will allow the
application to run.

* Copy these files to a folder that is configured in the Windows path. You can
configure a new folder in the Windows path by changing the environment
variables in System Properties.

Some internet tutorials teach you to include these files in folders, such
as Windows\System32. Do not do this. If you do this, it can be hard to
~ change the library version in the future, since this folder has a lot of other
Q dl1ls systems, and you may lose track of what you already placed in
there. Also, you can always disable a custom path to test an installer and
check whether you forgot to pack a d11 in your installation bundle.

[235]

Developing Segmentation Algorithms for Text Recognition

Installing Tesseract on Mac

The easiest way to install Tesseract OCR on Mac is using Homebrew. If you don't
have Homebrew installed, just go to the Homebrew site (http://brew.sh/), open
your console, and run the Ruby script that is on the front page. You may be required
to type your administrator password.

After homebrew is installed, just type the following command:

brew install tesseract

The English language is already included in this installation. If you want to install
other language packs, just run the following command:

brew install tesseract --all-languages

This will install all language packs. Then, just go to the Tesseract installation
directory and delete all unwanted languages. Homebrew usually installs stuff in /
usr/local/.

Using Tesseract OCR library

As Tesseract OCR is already integrated with OpenCV 3.0, it still worth studying its
API since it allows a finer-grained control over Tesseract parameters. The integration
will be studied in the next chapter.

Creating a OCR function

We'll change the previous example to work with Tesseract. We will start with adding
baseapi and fstream tesseracts to the list:

#include <opencv2/opencv.hpp>
#include <tesseract/baseapi.h>

#include <vector>
#include <fstream>

Then, we'll create a global TessBaseAPI object that represents our Tesseract
OCR engine:

tesseract: :TessBaseAPI ocr;

[236]

http://brew.sh/

Chapter 10

The ocr engine is completely self-contained. If you want to create
M multithreaded OCR software, just add a different TessBaseAPI
Q object to each thread, and the execution will be fairly thread-safe. You
just need to guarantee that file writing is not done over the same file;
otherwise, you'll need to guarantee safety for this operation.

Next, we will create a function called identify text that will run the OCR:

char* identifyText (Mat input, char* language = "eng")

{
ocr.Init (NULL, language, tesseract::0EM TESSERACT ONLY) ;
ocr.SetPageSegMode (tesseract: : PSM_SINGLE_ BLOCK) ;
ocr.SetImage (input.data, input.cols, input.rows, 1,

input.step) ;
char* text = ocr.GetUTF8Text () ;
cout << "Text:" << endl;

cout << text << endl;
cout << "Confidence: " << ocr.MeanTextConf () << endl << endl;

// Get the text
return text;

}

Let's explain this function line by line. In the first line, we start initializing Tesseract.
This is done by calling the init function. This function has the following signature:

int Init (const char* datapath, const char* language,
OcrEngineMode oem)

Let's explain each parameter:

* Datapath: This is the path to the tessdata files of the root directory. The
path must end with a backslash / character. The tessdata directory contains
the language files that you installed. Passing NULL to this parameter will
make Tesseract search in its installation directory, which is the location
where this folder is normally present. It's common to change this value to
args [0] when deploying an application and include the tessdata folder in
your application path.

[237]

Developing Segmentation Algorithms for Text Recognition

* Language: This is a three-letter word with the language code (for example,
eng for English, por for Portuguese, or hin for Hindi). Tesseract supports
loading of multiple language code using the + sign. So, passing eng + por will
load both English and Portuguese. Of course, you can only use languages
that you have previously installed; otherwise, the loading will fail. A
language config file can specify that two or more languages must be loaded
together. To prevent this, you can use a tilde ~. For example, you can use
hin+~eng to guarantee that English is not loaded with Hindi, even if it is
configured to do so.

* OcrEngineMode: These are OCR algorithms that will be used. They can have
one of the following values:

° OEM_TESSERACT ONLY: This uses just Tesseract. It's the fastest
method, but it also has less precision.

° OEM_CUBE_ONLY: This uses cube engine. It's slower, but it's more
precise. This will only work if your language was trained to support
this engine mode. To check whether that's the case, look for . cube
files for your language in the tessdata folder. The support for
English is guaranteed.

° OEM_TESSERACT CUBE_COMBINED: This combines both Tesseract and
Cube in order to achieve the best possible OCR classification. This
engine has the best accuracy and the slowest execution time.

° oEeM_DEFAULT: This tries to infer the strategy based on the language
config file and the command line config file, or in the absence of
both, uses OEM_TESSERACT ONLY.

It's important to emphasize that the init function can be executed many times. If

a different language or engine mode is provided, Tesseract will clear the previous
configuration and start again. If the same parameters are provided, Tesseract is smart
enough to simply ignore the command. The init function returns o for success and
-1 for failure.

Our program then proceeds by setting the page segmentation mode:
ocr.SetPageSegMode (tesseract: :PSM_SINGLE_ BLOCK) ;
There are several segmentation modes available, which are as follows:

* psM_0sD_ONLY: Using this mode, Tesseract just runs its preprocessing
algorithms to detect the orientation and script detection.

* psM_AUTO_0sD: This tells Tesseract to perform automatic page segmentation
with orientation and script detection.

[238]

Chapter 10

* psM_AUTO_ONLY: This does page segmentation, but avoids doing orientation,
script detection, or OCR.

* psM_AUTO: This does page segmentation and OCR, but avoids doing
orientation or script detection.

* PSM_SINGLE_COLUMN: This assumes that the text of variable sizes is displayed
in a single column.

* PSM_SINGLE_ BLOCK VERT TEXT: This treats the image as a single uniform
block of a vertically aligned text.

* PsSM_SINGLE_BLOCK: This is a single block of text. This is the default
configuration. We will use this flag since our preprocessing phase
guarantees this condition.

* psM_SINGLE_LINE: This indicates that the image contains only one line
of text.

* PsSM_SINGLE_WORD: This indicates that the image contains just one word.

* PSM_SINGLE WORD_CIRCLE: This indicates that the image is just one word
that is disposed in a circle.

* PSM_SINGLE_CHAR: This indicates that the image contains a single character.

Notice that Tesseract has already implemented deskewing and text segmentation
algorithms, as most OCR libraries do. But it's interesting to know such algorithms as
you can provide your own preprocessing phase for specific needs. This allows you
to improve text detection is many cases. For example, if you are creating an OCR
application for old documents, the default threshold used by Tesseract can create a
dark background. Tesseract may also be confused by borders or severe text skewing.

Next, we call the set Image method with the signature:

void SetImage (const unsigned char* imagedata, int width,
int height, int bytes per pixel, int bytes per line);

The parameters are almost self-explanatory, and most of them can be read directly
from our mat object:

* data: This is a raw byte array that contains the image data. OpenCV
contains a function called data () in the Mat class that provides a direct
pointer to the data.

* width: This is the image width.
* height: This is the image height.

[239]

Developing Segmentation Algorithms for Text Recognition

* Dbytes_per_pixel: This is the number of bytes per pixel. We use 1, since we
are dealing with a binary image. If you want to allow the code to be more
generic, you can also use the Mat : :elemSize () function that provides the
same information.

* Dbytes_per_line: This is the number of bytes in a single line. We use the
Mat : : step property since some images add trailing bytes.

Then, we call GetUTF8Text to run the recognition itself. The recognized text is
returned, encoded with UTF8 without BOM (byte order mark). Before we return it,
we also print some debug information.

The MeanTextConf returns a confidence index, which can be a number from o to 100:

char* text = ocr.GetUTF8Text () ;

cout << "Text:" << endl;

cout << text << endl;

cout << "Confidence: " << ocr.MeanTextConf () << endl << endl;

Sending the output to a file

Let's change our main method to send the recognized output to a file. We do this
using a standard ofstream:

int main(int argc, char* argv([])

{
//Loads the ticket image and binarize it
Mat ticket = binarize(imread("ticket.png")) ;
auto regions = findTextAreas (ticket) ;

std::ofstream file;
file.open("ticket.txt", std::ios::out | std::ios::binary) ;

//For each region

for (auto region : regions)
//Crop
auto cropped = deskewAndCrop (ticket, region);
char* text = identifyText (cropped, "por");

file.write (text, strlen(text));
file << endl;

file.close() ;

[240]

Chapter 10

Notice the following line:
file.open("ticket.txt", std::ios::out | std::ios::binary) ;

This opens the file in binary mode. This is important since Tesseract returns a text
encoded in UTF-§, taking into account the special characters available in Unicode.
We also write the output directly using the following command:

file.write (text, strlen(text));

In this sample, we called identify using Portuguese as the input language (this is
the language in which the ticket was written). You can use another photo, if you like.

The complete source file is provided in the segmentOcr . cpp file, which
L= comes along with this book.

ticket.png is a low resolution image, since we imagined that you
would want to display a window with the image while studying this
code. For this image, Tesseract results are rather poor. If you want
Al S : .

~ to test it with a higher resolution image, the code is provided with
a ticketHigh.png image. To test this image, change the dilation
repetitions to 12 and the minimum box size from 20 to 60. You'll get
a much higher confidence rate (about 87%) and the resulting text will
be fully readable. The segmentOcrHigh. cpp file contains these
modifications.

Summary

In this chapter, we presented a brief introduction to OCR applications. We saw that
the preprocessing phase of such systems must be adjusted according to the type of
documents that we are planning to identify. We learned the common operations
while preprocessing text files, such as thresholding, cropping, skewing, and text
region segmentation. Finally, we learned how to install and use Tesseract OCR to
convert our image to text.

In the next chapter, we'll use a more sophisticated OCR technique to identify text in a
casually taken picture or video —a situation known as scene text recognition. This is
a much more complex scenario, since the text can be anywhere, in any font, and with
different illuminations and orientations. There can be no text at all! We'll also learn
how to use the OpenCV 3.0 text contribution module, which is fully integrated

with Tesseract.

[241]

11

Text Recognition
with Tesseract

In the previous chapter, we covered the very basic OCR processing functions.
Although they are quite useful for scanned or photographed documents, they
are almost useless when dealing with text that casually appears in a picture.

In this chapter, we'll explore the OpenCV 3.0 text module, which deals specifically
with scene text detection. Using this AP, it is possible to detect text that appears in
a webcam video, or to analyze photographed images (like the ones in Street View or
taken by a surveillance camera) to extract text information in real time. This allows
a wide range of applications to be created, from accessibility to marketing and even
robotics fields.

By the end of this chapter, you will be able to:

* Understand what is scene text recognition

* Understand how the text API works

* Use the OpenCV 3.0 text API to detect text

* Extract the detected text to an image

* Use the text API and Tesseract integration to identify letters

How the text APl works

The text API implements the algorithm proposed by Lukas Neumann and Jiri
Matas in the article called Real-Time Scene Text Localization and Recognition during
the CVPR (Computer Vision and Pattern Recognition) Conference in 2012. This
algorithm represented a significant increase in scene text detection, performing the
state-of-the art detection both in the CVPR database as well as in the Google Street
View database.

[243]

Text Recognition with Tesseract

Before we use the API, let's take a look at how this algorithm works under the hood,
and how it addresses the scene text detection problem.

Remember that the OpenCV 3.0 text API does not come with the standard
OpenCV modules. It's an additional module present in the OpenCV

contribute package. If you need to install OpenCV using the Windows

Installer, refer to Chapter 1, Getting Started with OpenCV, which will help
you install these modules.

The scene detection problem

Detecting text that randomly appears in a scene is a problem harder than it looks.
There are several new variables when we compare them to identify scanned text,
which are as follows:

Tri-dimensionality: The text can be in any scale, orientation, or perspective.
Also, the text can be partially occluded or interrupted. There are literally
thousands of possible regions where it can appear in the image.

Variety: Text can be in several different fonts and colors. The font can
have outline borders or not. The background can be a dark, light, or a
complex image.

Illumination and shadows: The sunlight position and apparent color
changes over the time. Different weather conditions such as fog or rain can
generate noise. Illumination can be a problem even in closed spaces, since
light reflects over colored objects and hits the text.

Blurring: Text can appear in a region that is not prioritized by the auto focus
lenses. Blurring is also common in moving cameras, in perspective text, or in
the presence of fog.

The following image, taken from Google Street View, illustrates these problems.
Notice how several of these situations occur simultaneously in just a single image:

[244]

Chapter 11

Performing a text detection to deal with such situations may prove computationally
expensive, since there are 2n subsets of pixels where the text can be, n being the
number of pixels in the image.

In order to reduce the complexity, two strategies are commonly applied, which are
as follows:

Use a sliding window to search a subset of image rectangles. This strategy
just reduces the number of subsets to a smaller amount. The amount

of regions varies according to the complexity of text being considered.
Algorithms that deal just with text rotation can use small values, as
compared to the ones that also deal with rotation, skewing, perspective,
and so on. The advantage of this approach is its simplicity, but it is usually
limited to a narrow range of fonts, and often, to a lexicon of specific words.

Use of the connected component analysis. This approach assumes that
pixels can be grouped into regions where pixels have similar properties.
These regions are supposed to have higher chances of being identified as
characters. The advantage of this approach is that it does not depend on
several text properties (orientation, scale, and fonts), and they also provide
a segmentation region that can be used to crop text to the OCR. This was the
approach used in the previous chapter.

The OpenCV 3.0 algorithm uses the second one by performing the connected
component analysis and searching for extremal regions.

Extremal regions

Extremal regions are connected areas that are characterized by uniform intensity and
surrounded by a contrast background. The stability of a region can be measured by
calculating how resistant the region is to the thresholding variance. This variance can
be measured with a simple algorithm:

1.

Applying the threshold generates an image A. Detect its connected pixel
regions (extremal regions).

Increasing the threshold by a delta amount generates an image B. Detect its
connected pixel regions (extremal regions).

Compare image B with A. If a region in image A is similar to the same
region in image B, then add it to the same branch in the tree. The criteria of
similarity may vary from implementation to implementation, but it's usually
related to the image area or general shape. If a region in image A appears to
be split in image B, create two new branches in the tree for the new regions,
and associate them with the previous branch.

[245]

Text Recognition with Tesseract

4. Set A =B and go back to step 2, until a maximum threshold is applied.

This will assemble a tree of regions, as shown in the following figure:

ONY Y Y Y YIY Y Y| Y Y Y Y YYIYYIYYYY Y

Nl NMl NY NY NY NY Y[
NIN/N|NN|NNNN NN NN N NN NSNS S S S

2 DD
0000000000 00000000000O0 ((('('(((“
1

Image source: http://docs.opencv.org/master/da/d56/group_text detect.html#gsc.tab=0

The resistance to variance is determined by counting the number of nodes that are in
the same level.

By analyzing this tree, it's also possible to determine the MSERs (Maximally
Stable Extremal Regions), that is, the regions where the area remains stable in a
wide variety of thresholds. In the previous image, it is clear that these areas will
contain the letters O, N, and Y. The main disadvantage of MSERs is that they are
weak in the presence of blur. OpenCV provides a MSER feature detector in the
feature2d module.

Extremal regions are interesting because they are strongly invariant to illumination,
scale, and orientation. They are also good candidates for text because they are also
invariant of the type of font used, even when the font is styled. Each region can also
be analyzed in order to determine its boundary ellipsis and have properties, such as
affine transformation and area that can be numerically determined. Finally, it's worth
mentioning that this entire process is fast, which makes it a very good candidate for
real-time applications.

Extremal region filtering

Although MSERs are a common approach to define which extremal regions are
worth working with, the Neumann and Matas algorithm uses a different approach
by submitting all extremal regions to a sequential classifier that is trained for
character detection. This classifier works in the following two different stages:

* The first stage incrementally computes descriptors (the bounding box,
perimeter, area, and Euler number) for each region. These descriptors are
submitted to a classifier that estimates how probable the region is for it to
be a character in the alphabet. Then, only the regions of high probability are
selected to stage 2.

[246]

http://docs.opencv.org/master/da/d56/group__text__detect.html#gsc.tab=0

Chapter 11

* In this stage, the features of the whole area ratio, convex hull ratio, and the
number of outer boundary inflexion points are calculated. This provides
a more detailed information that allows the classifier to discard nontext
characters, but they are also much slower to calculate.

In OpenCV, this process is implemented in an ERFilter class. It is also possible
to use different image single-channel projections such as R, G, B, luminance, or
grayscale conversion to increase the character recognition rates.

Finally, all the characters must be grouped in text blocks (such as words or
paragraphs). OpenCV 3.0 provides two algorithms for this purpose:

* Prune Exhaustive Search: This was also proposed by Mattas in 2011.
This algorithm does not need any previous training or classification,
but is limited to a horizontally aligned text.

* Hierarchical Method for Oriented Text: This deals with texts in any
orientation, but needs a trained classifier.

Since these operations require classifiers, it is also necessary to

provide a trained set as an input. OpenCV3.0 provides some of
= these trained sets in the sample package. This also means that

this algorithm is sensitive to the fonts used in classifier training.

A demonstration of this algorithm can be seen in the video provided by Neumann at
https://youtu.be/ejd5gGea2Fo.

Once the text is segmented, it just needs to be sent to an OCR, such as Tesseract,
similar to what we did in the previous chapter. The only difference is that now we
will use OpenCV text module classes to interact with Tesseract, since they provide a
way to encapsulate the specific OCR engine we are using.

Using the text API

Enough of theory. It's time to see how the text module works in practice. Let's study
how to use it to perform text detection, extraction, and identification.

Text detection

Let's start with creating a simple program to perform text segmentation using
ERFilters. In this program, we will use the trained classifiers from text API
samples. You can download them from the OpenCV repository, but they are also
available in the book's companion code.

[247]

https://youtu.be/ejd5gGea2Fo

Text Recognition with Tesseract

First, we start with including all the necessary 1ibs and using:

#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/text.hpp"

#include <vectors>
#include <iostream>

using namespace std;
using namespace cv;
using namespace cv::text;

Recall from our previous section that the ERFilter works separately in each image
channel. So, we must provide a way to separate each desired channel in a different
single cv: :Mat channel. This is done by the separateChannels function:

vector<Mat> separateChannels (Mat& src)
{
vector<Mat> channels;
//Grayscale images
if (src.type() == CV_8U || src.type() == CV_8UC1l) ({
channels.push back(src) ;
channels.push back(255-src) ;
return channels;

//Colored images
if (src.type() == CV_8UC3) {
computeNMChannels (src, channels) ;
int size = static_cast<int>(channels.size())-1;
for (int ¢ = 0; ¢ < size; c++)
channels.push back (255-channels[c]) ;
return channels;

//Other types
cout << "Invalid image format!" << endl;
exit (-1);

[248]

Chapter 11

First, we verify that the image is a single channel image (for example, a grayscale
image). If that's the case, we just add this image and its negative to be processed.

Otherwise, we check whether it's an RGB image. For colored images, we call the
computeNMChannels to split the image in its several channels. The function is
defined as follows:

void computeNMChannels (InputArray src, OutputArrayOfArrays channels,
int mode = ERFILTER NM RGBLGrad) ;

Its parameters are described as follows:

* src: This is the source input array. It should be a colored image of
type 8UC3.

* channels: This is a vector of mats that will be filled with the
resulting channels.

* mode: This defines the channels that will be computed. There are two possible
values that can be used, which are as follows:

* ERFILTER NM RGBLGrad: This indicates that the algorithm uses an RGB color,
lightness, and gradient magnitude as channels (default).

* ERFILTER NM_IHSGrad: This indicates that the image will be split by its
intensity, hue, saturation, and gradient magnitude.

We also append the negatives of all color components in the vector. Finally, if
another kind of image is provided, the function will terminate the program
with an error message.

Negatives are appended so the algorithms will cover both bright text on a
% dark background and dark text on a bright background. There is no point
’ in adding a negative to the gradient magnitude.

[249]

Text Recognition with Tesseract

Let's proceed to the main method. We'll use the program to segment the easel.png
image, which is provided with the source code:

This image was taken by a mobile phone camera, while I was walking on the street.
Let's code so that you can also use a different image easily by providing its name in
the first program argument:

int main(int argc, const char * argvl[])

{
char* image = argc < 2 ? "easel.png" : argv[1l];
auto input = imread (image) ;

Next, we'll convert the image to grayscale and separate its channels by calling the
separateChannels function:

Mat processed;
cvtColor (input, processed, CV_RGB2GRAY) ;
auto channels = separateChannels (processed) ;

If you want to work with all the channels in a colored image, just replace the first two
lines of the preceding code with the following code:

Mat processed = input;

[250]

Chapter 11

We will need to analyze six channels (RGB + inverted) instead of two (gray
+ inverted). Actually the processing time will increase much more than the
improvements that we can get . with the channels in hand, we need to create
ERFilters for both the stages of the algorithm. Luckily, the opencv text
contribution module provides functions for this:

// Create ERFilter objects with the 1st and 2nd stage classifiers

auto filterl = createERFilterNM1 (
loadClassifierNMl ("trained classifierNMl.xml"), 15, 0.00015f,
0.13f, 0.2f,true,0.1f);

auto filter2 = createERFilterNM2 (
loadClassifierNM2 ("trained classifierNM2.xml"),0.5);

For the first stage, we call the 1oadClassifierNM1 function to load a previously
trained classification model. The XML containing the training data is its only
argument. Then, we call createERFilterNM1 to create an instance of the ERFilter
class that will perform the classification. The function has the following signature:

Ptr<ERFilter> createERFilterNMl (const Ptr<ERFilter::Callback>& cb,
int thresholdbDelta = 1,
float minArea = 0.00025, float maxArea = 0.13,
float minProbability = 0.4, bool nonMaxSuppression = true,
float minProbabilityDiff = 0.1);

The parameters are described as follows:

e cb: This is the classification model. This is the same model that we loaded
with the 1oadCcassifierNM1 function.

* thresholdDelta: This is the amount to be added to the threshold in each
algorithm iteration. The default value is 1, but we'll use 15 in our example.

* nminArea: This is the minimum area of the ER where text can be found. This
is measured in % of the image size. ERs with areas smaller than this are
immediately discarded.

* maxArea: This is the maximum area of the ER where text can be found. This
is also measured in % of the image size. ERs with areas greater than this are
immediately discarded.

* minProbability: This is the minimum probability that a region must have to
be a character in order to remain for the next stage.

[251]

Text Recognition with Tesseract

* nonMaxSupression: This indicates that non-maximum suppression will be
done in each branch probability.

* minProbabilityDiff: Thisis the minimum probability difference between
the minimum and maximum extreme region.

The process for the second stage is similar. We call 1oadclassifierNM2 to load
the classifier model for the second stage and createERFilterNM2 to create the
second stage classifier. This function only takes the loaded classification model and

a minimum probability that a region must achieve to be considered a character as
input parameters.

So, let's call these algorithms in each channel to identify all possible text regions:

//Extract text regions using Newmann & Matas algorithm
cout << "Processing " << channels.size() << " channels..."
cout << endl;

vector<vector<ERStat> > regions (channels.size()) ;

for (int c¢=0; c < channels.size(); c++)

{
cout << " Channel " << (c+1l) << endl;
filterl->run(channels[c], regionsl|c]);
filter2->run(channels[c], regionsl|c]);

}

filterl.release();
filter2.release();

In the previous code, we used the run function of the ERFilter class. This function
takes the following two arguments:

* The input channel: This is the image to be processed.

* The regions: In the first stage algorithm, this argument will be filled with the
detected regions. In the second stage (performed by filter2), this argument
must contain the regions selected in stage 1, which will be processed and
filtered by stage 2.

Finally, we release both the filters, since they will not be needed anymore in
the program.

The final segmentation step is to group all ERRegions into possible words and define
their bounding boxes. This is done by calling the erGrouping function:

//Separate character groups from regions
vector< vector<Vec2i> > groups;
vector<Rect> groupRects;

erGrouping (input, channels, regions, groups, groupRects, ERGROUPING
ORIENTATION HORIZ) ;

[252]

Chapter 11

This function has the following signature:

void erGrouping (InputArray img, InputArrayOfArrays channels,

std: :vector<std: :vector<ERStat> > ®ions,
std: :vector<std: :vector<Vec2i> > &groups,
std::vector<Rect> &groups rects,

int method = ERGROUPING ORIENTATION HORIZ,
const std::string& filename = std::string(),
float minProbablity = 0.5);

Let's take a look at the definition of each parameter:

img: This is the original input image. You can refer to the
following observations.

regions: This is a vector of single-channel images where regions
are extracted.

groups: This is an output vector of indexes of grouped regions. Each group
region contains all extremal regions of a single word.

groupRects: This is a list of rectangles with the detected text regions.

method: This is a method of grouping. It can be as follows:

° ERGROUPING ORIENTATION HORIZ: This is the default value. This
only generates groups with horizontally oriented text by performing
an exhaustive search, as proposed originally by Neumann and Matas.

° ERGROUPING_ORIENTATION_ ANY: This generates groups with text in
any orientation, using Single Linkage Clustering and classifiers.
If you use this method, the filename of the classifier model must be
provided in the next parameter.

° Filename: This is the name of the classifier model. It is only needed if
ERGROUPING ORIENTATION ANY is selected.

° minProbability: This is the minimum detected probability of
accepting a group. Also, it is only needed if the ERGROUPING
ORIENTATION ANY is used.

The code also provides a call to the second method, but it's commented. You can
switch between the two to test it. Just comment the previous call and uncomment
this one:

erGrouping (input, channels, regions,

groups, groupRects, ERGROUPING ORIENTATION ANY,
"trained classifier erGrouping.xml", 0.5);

[253]

Text Recognition with Tesseract

For this call, we also used the default trained classifier provided in the text module

sample package.
Finally, we draw the region boxes and show the results:

// draw groups boxes
for (auto rect : groupRects)
rectangle (input, rect, Scalar (0, 255, 0), 3);
imshow ("grouping", input) ;
waitKey (0) ;

The output of the program is shown in the following image:

Eligsiing

You can check the complete source code in the detection.cpp file.

[254]

Chapter 11

While most OpenCV text module functions are written to support both
grayscale and colored images as their input parameters, by the time
- this book was written, there were bugs that prevented using grayscale
% images in functions, such as erGrouping; for instance. Refer to https://
S~ github.com/Itseez/opencv_contrib/issues/3009.

Always remember that the OpenCV contribute modules package is not as
stable as the default opencv packages.

Text extraction

Now that we detected the regions, we must crop the text before we submit it to the
OCR. We can simply use a function such as getRectSubpix or Mat : : copy using
each region rectangle as a ROI (region of interest), but since the letters are skewed,
some undesired text may be cropped as well; for instance, this is what one of the
regions will look like if we just extract the ROI based in its given rectangle:

STAMog

Fortunately, the ERFilter provides us with an object called ErRStat, which contains
pixels inside each extremal region. With these pixels, we can use the OpenCV
floodFill function to reconstruct each letter. This function is capable of painting
similar colored pixels based in a seed point, just like the bucket tool of most drawing
applications. This is what the function signature looks like:

int floodFill (InputOutputArray image, InputOutputArray mask,

Point seedPoint, Scalar newVal,
CV_OUT Rect* rect=0,

Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
int flags = 4
) ;

Let's understand these parameters and see how they can be used:

* image: This is the input image. We'll use the channel image where the
extremal region was taken. This is where the function normally does the
flood fill, unless the FLOODFILL MASK ONLY is supplied. In this case, the
image remains untouched and the drawing occurs in the mask. That's exactly
what we will do.

[255]

https://github.com/Itseez/opencv_contrib/issues/309
https://github.com/Itseez/opencv_contrib/issues/309

Text Recognition with Tesseract

mask: The mask must be an image two rows and columns greater than the
input image. When flood fill draws a pixel, it verifies that the corresponding
pixel in the mask is zero. In that case, it will draw and mark this pixel as one
(or the other value passed in the flags). If the pixel is not zero, flood fill does
not paint the pixel. In our case, we'll provide a blank mask, so every letter
will get painted in the mask.

seedPoint: This is the starting point. It's similar to the place where you click
when you want to use the "bucket" tool of a graphic application.

newvVal: This is the new value of the repainted pixels.

loDiff and upDiff: These parameters represent the lower and upper
difference between the pixels being processed and their neighbors. The
neighbor will be painted if it falls in this range. If the FLOODFILL_FIXED
RANGE flag is used, the difference between the seed point and the pixels being
processed will be used instead.

rect: This is the optional parameter that limits the region where the flood fill
will be applied.

flags: This value is represented by a bit mask.

© The least significant eight bits of the flag contain a connectivity value.
A value of 4 indicates that all the four edge pixels will be used, and a
value of 8 will indicates that diagonal pixels must also be taken into
account. We'll use four for this parameter.

° The next 8 to 16 bits contain a value from 1 to 255 and are used to fill
the mask. Since we want to fill the mask with white, we'll use 255 <<
8 for this value.

° There are two more bits that can be set by adding the FLOODFILL
FIXED_RANGE and FLOODFILL_ MASK_ONLY flags, as described earlier.

We'll create a function called drawkR. This function will receive four parameters:

A vector with all processed channels
The ERStat regions

The group that must be drawn

The group rectangle

[256]

Chapter 11

This function will return an image with the word represented by this group. Let's
start with this function by creating the mask image and defining the flags:

Mat out = Mat::zeros(channels[0] .rows+2, channels[0].cols+2, CV_8UC1) ;

int flags = 4 //4 neighbors
(255 << 8) //paint mask in white (255)
+ FLOODFILL_ FIXED RANGE //fixed range
+ FLOODFILL_MASK ONLY; //Paint just the mask

Then, we'll loop though each group. It's necessary to find the region index and its
stats. There's a chance that this extreme region will be the root, which does not
contain any points. In this case, we'll just ignore it:

for (int g=0; g < group.size(); g++)
{
int idx = grouplg] [0];
ERStat er = regions[idx] [grouplg] [1]];
//Ignore root region
if (er.parent == NULL)
continue;

Now, we can read the pixel coordinate from the Erstat object. It's represented by
the pixel number, counting from top to bottom, left to right. This linear index must
be converted to a row (y) and column (z) notation, using a formula similar to the one
that we discussed in Chapter 2, An Introduction to the Basics of OpenCV:

)

int px = er.pixel % channels[idx] .cols;
int py = er.pixel / channels[idx] .cols;
Point p(px, py);

Then, we can call the £1oodFill function. The ERStat object gives us the value that
we need to use in the 1oDif f parameter:

floodFill (
channels [idx], out, //Image and mask
p, Scalar(255), //Seed and color
nullptr, /No rect
Scalar (er.level), Scalar(0), //LoDiff and upDiff
flags //Flags

[257]

Text Recognition with Tesseract

After we do this for all regions in the group, we'll end it with an image a little bigger
than the original one, with a black background and the word in white letters. Now,
let's crop just the area of the letters. Since the region rectangle was given, we start
with defining it as our region of interest:

out = out (rect) ;

Then, we'll find all nonzero pixels. This is the value that we'll use in the minAreaRrect
function to get the rotated rectangle around the letters. Finally, we borrow the
previous chapter's deskewAndCrop function to crop and rotate the image for us:

vector<Point> points;

findNonZero (out, points);

//Use deskew and crop to crop it perfectly
return deskewAndCrop (out, minAreaRect (points)) ;

}

This is the result of the process for the easel image:

ESTAMOS
ATENDENDO

Text recognition
In Chapter 10, Developing Segmentation Algorithms for Text Recognition, we used the

Tesseract API directly to recognize the text regions. This time, we'll use OpenCV
classes to accomplish the same goal.

In OpenCV, all OCR-specific classes are derived from the BaseOCR virtual class.
This class provides a common interface for the OCR execution method itself.

Specific implementations must inherit from this class. By default, the text module
provides three different implementations: OCRTesseract, OCRHMMDecoder, and
OCRBeamSearchDecoder.

[258]

Chapter 11

This hierarchy is depicted in the following class diagram:

BaseOCR

A

OCRTesseract | | OCRHMMDecoder | | OCRBeamSearchDecoder

With this approach, we can separate the part of the code where the OCR mechanism
is created from the execution itself. This makes it easier to change the OCR
implementation in the future.

So, let's start with creating a method that decides which implementation we'll

use based on a string. We will currently support Tesseract. However, you can

take a look at the chapter code where a demonstration with HMMDecoder is also
provided. We are also accepting the OCR engine name in a string parameter, but we
can improve our application flexibility by reading it from an external JsoN or XML
configuration file:

cv::Ptr<BaseOCR> initOCR2 (const string& ocr)

if (ocr == "tesseract") {
return OCRTesseract::create(nullptr, "eng+por");
throw string("Invalid OCR engine: ") + ocr;

}

You may notice that the function returns a Pt r<BaseOCR>. Now, take a look at the
highlighted code. It calls the create method to initialize a Tesseract OCR instance.
Let's take a look at its official signature, since it allows several specific parameters:

Ptr<OCRTesseract> create(const char* datapath=NULL,
const char* language=NULL,
const char* char whitelist=NULL,
int oem=3, int psmode=3) ;

Let's dissect each one of these parameters:

* datapath: This is the path to the tessdata files of the root directory. The
path must end with a backslash / character. The tessdata directory contains
the language files you installed. Passing nullptr to this parameter will make
Tesseract search in its installation directory, which is the location where
this folder is normally present. It's common to change this value to args [0]
when deploying an application and include the tessdata folder in your
application path.

[259]

Text Recognition with Tesseract

language: This is a three letter word with the language code (for example,
eng for English, por for Portuguese, or hin for Hindi). Tesseract supports
loading of multiple language codes using the + sign. So, passing eng+por will
load both English and Portuguese languages. Of course, you can only use
languages that you previously installed; otherwise, the loading will fail. A
language configuration file can specify that two or more languages must be
loaded together. To prevent this, you can use a tilde ~. For example, you can
use hin+~eng to guarantee that English is not loaded with Hindji, even if it is
configured to do so.

whitelist: This is the character set to be considered for
recognition. If nullptr is passed, the characters will be
0123456789abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.

oem: These are OCR algorithms that will be used. They can have one of the
following values:

° OEM_TESSERACT_ONLY: This uses just Tesseract. It's the fastest
method, but it also has less precision.

° OEM_CUBE_ONLY: This uses the cube engine. It's slower, but more
precise. This will only work if your language was trained to support
this engine mode. To check whether that's the case, look for .cube
files for your language in the tessdata folder. The support for
English language is guaranteed.

° OEM_TESSERACT CUBE_COMBINED: This combines both Tesseract and
cube to achieve the best possible OCR classification. This engine has
the best accuracy and the slowest execution time.

° OEM_DEFAULT: This tries to infer the strategy based in the language
config file, command line config file, or in the absence of both, uses
OEM_TESSERACT_ONLY.

psmode: This is the segmentation mode. The modes are as follows:
° psM_0SD_ONLY: Using this mode, Tesseract will just run its
preprocessing algorithms to detect orientation and script detection.

° psM_AUTO_0SD: This tells Tesseract to do automatic page
segmentation with orientation and script detection.

° psM_AUTO_ONLY: This does page segmentation, but avoids doing
orientation, script detection, or OCR. This is the default value.

° psM_avuTO: This does page segmentation and OCR, but avoids doing
orientation or script detection.

° PSM_SINGLE COLUMN: This assumes that the text of variable sizes is
displayed in a single column.

[260]

Chapter 11

° PSM_SINGLE_ BLOCK VERT_TEXT: This treats the image as a single
uniform block of a vertically aligned text.

° psM_SINGLE_ BLOCK: This is a single block of text. This is the default
configuration. We will use this flag since our preprocessing phase
guarantees this condition.

° PSM_SINGLE_LINE: This indicates that the image contains only one
line of text.

° psM_SINGLE_WORD: This indicates that the image contains just one
word.

° PSM_SINGLE_WORD_CIRCLE: This informs that the image is a just one
word disposed in a circle.

° PSM_SINGLE_CHAR: This indicates that the image contains a single
character.

For the last two parameters, the #include tesseract directory recommends you to
use the constant names instead of directly inserting their values.

The last step is to add text detection to our main function. To do this, just add the
following code to the end of the main method:

auto ocr = initOCR("tesseract") ;
for (int i = 0; 1 < groups.size(); 1++)
{
Mat wordImage = drawkR (channels, regions, groupsl[i],
groupRects [i]) ;
string word;
ocr->run (wordImage, word) ;
cout << word << endl;

}

In this code, we started by calling our initOCR method to create a Tesseract instance.
Notice that the remaining code will not change if we choose a different OCR engine,
since the run method signature is guaranteed by the BaseOCR class.

Next, we iterate over each detected ERFilter group. Since each group represents a
different word, we:

* (all the previously created drawER function to create an image with
the word.

* Create a text string called word, and call the run function to recognize the
word image. The recognized word will be stored in the string.

* Print the text string on the screen.

[261]

Text Recognition with Tesseract

Let's take a look at the run method signature. This method is defined in the BaseOCr
class and will be equal for all specific OCR implementations, even the ones that
might be implemented in the future:

virtual void run(Mat& image, std::string& output text,
std: :vector<Rect>* component rects=NULL,
std::vector<std::string>* component texts=NULL,
std::vector<float>* component confidences=NULL,

int component level=0) = 0;

Of course, this is a pure virtual function that must be implemented by each specific
class (such as the ocRTesseract class that we just used):

* image: This is the input image. It must be an RGB or a grayscale image

* component_rects: We can provide a vector to be filled with the bounding
box of each component (words or text lines) detected by the OCR engine

* component_texts: If given, this vector will be filled with the text strings of
each component detected by the OCR

* component_confidences: If given, the vector will be filled with floats and
the confidence values of each component

* component_level: This defines what a component is. It may have the ocr_
LEVEL_WORD (by default) or OCR_LEVEL_TEXT LINE values

If necessary, we prefer changing the component level to a word or line
\l in the run () method instead of doing the same thing in the psmode
~ parameter of the create () function. This is preferable since the run
Q method will be supported by any OCR engine that decides to implement
the BaseOCR class. Always remember that the create () method is
where vendor specific configurations are set.

This is the program's final output:

Ch\Projetos\VisualhOpenClText\ Debug\ OpenCWText. exe - O Ed
Processing 2 channels. ..

Channel 1

Channel 2

Detected text:

ASA 8E PRESENTES

[262]

Chapter 11

Despite a minor confusion with the & symbol, every word was perfectly recognized!
You can check the complete source code in the ocr. cpp file, in the chapter code.

Summary

In this chapter, we saw that scene text recognition is a far more difficult OCR
situation than working with scanned texts. We studied how the text module
addresses this problem with extremal region identification using the Newmann and
Matas algorithm. We also saw how to use this API with the f1oodfill function to
extract the text to an image and submit it to Tesseract OCR. Finally, we studied how
the OpenCV text module integrates with Tesseract and other OCR engines, and how
we can use its classes to identify what's written in the image.

This ends our journey with OpenCV. From the beginning to the end of this book,
we expected you to have a glance about the Computer Vision area and have a
better understanding of how several applications work. We also sought to show
you that, although OpenCV is quite an impressive library, the field is already full of
opportunities for improvement and research.

Thank you for reading! No matter whether you use OpenCV for creating impressive
commercial programs based on Computer Vision, or if you use it in a research that
will change the world, we hope you will find this content useful. Just keep working
with your skills — this was just the beginning!

[263]

A

ANN:Ss (artificial neural networks) 127
application
creating, for AOI 103, 104
Automated Optical Inspection 100
automatic object inspection classification
example 133-135

background subtraction

about 164

naive background subtraction 164-166
basic CMake configuration files 20
basic data persistence 44
basic graphical user interface

with OpenCV 51-55
basic matrix operations 41-43
basic object types

about 38

Point object type 39

Rect object type 40

RotatedRect object type 40

Scalar object type 39

Size object type 40

Vec object type 38
Black Hat transform 186
blurring 244
buttons

adding, to user interface 63-67

Index

C

cameras
reading 33-37
cartoonize effect
about 93
creating 93-97
classifiers 253
CMake
reference 14
CMake script file
generating 76, 77
complex script
creating 23-25
Computer Vision applications
machine learning workflow 130-132
connected component algorithm 112-118
connectedComponents function
about 114
connectivity parameter 114
image parameter 114
labels parameter 114
type parameter 115
connectedComponentsWithStats function
about 115
CC_STAT_AREA parameter 115
CC_STAT_HEIGHT parameter 115
CC_STAT_LEFT parameter 115
CC_STAT_TO parameter 115
CC_STAT_WIDTH parameter 115
Centroids parameter 115
Stats parameter 115

[265]

Continuously Adaptive Meanshift 192

corner detection 199

corner point 199

CV_GUI_EXPANDED flag 53

CV_GUI_NORMAL flag 53

CVPR (Computer Vision and Pattern
Recognition) 243

D

datapath parameter 237, 259
data storage
file storage, writing to 44-46
decision tree 127
dependencies
managing 21-23
dilation 180
drawER function 256
Dynamic Link Libraries (DLLs) 14

E

extremal regions
about 245, 246
filtering 246, 247

F

facemask

code 157

overlaying, in live video 154-156
feature-based tracking

about 204

Farneback algorithm 210-214

Lucas-Kanade method 205-209
feature extraction

about 135

input image prediction 146-148

performing 135-139

SVM model, training 139-145
feature points 199
findContours algorithm 119-123
flags 256
frame differencing

about 169-172

working 173, 174

G

getRectSubPix function, arguments
CENTER 229
IMAGE 229
PATCH 229
PATCH_TYPE 229
SIZE 229
getRotationMatrix2D OpenCV function
ANGLE parameter 228
CENTER parameter 228
SCALE parameter 228
GitHub
URL 230
Good Features To Track 202-204
graphical user interface
creating 77-79
with QT 56-58

H

Haar cascades

about 150

features 150-152
Harris corner detector

for detecting points 199-202
HDRI (High Dynamic Range Imaging) 26

Hierarchical Method for Oriented Text 247

histogram

about 79

drawing 79-83
HSV (Hue Saturation Value) 190
human visual system

about 1-3

image content, understanding 3, 4

illumination and shadows 244
image color equalization 84-87
image parameter 255
images

about 26-29

reading/writing 29-33
imread function 30

[266]

imwrite function 31
input channel 252
input image
background, removing with light pattern
for segmentation 106-111
noise removal 105, 106
preprocessing 104
thresholding operation 112
input image, segmenting
about 112
connected component algorithm 112-118
findContours algorithm 119-123
integral images 152-154
interactive object tracker
building 192-198
interest point 199

K

K-nearest neighbors 127

L

language parameter 238, 260
library

creating 20, 21
Linux

OpenCV, installing on 16, 17
loDiff parameter 256
lomography effect

creating 87-92
Look up Table (LUT) 87,90

Mac
Tesseract, installing 236
machine learning
about 126
concepts 126
machine learning algorithm
classification 127
clustering 127
density estimation 127
regression 127

machine learning class hierarchy
StatModel class 128
machines
image content, challenges 4, 5
Mac OS X
OpenCV, installing on 14-16
mask parameter 256
matrices 26-29
maximally stable extremal
regions (MSERs) 222
Mixture of Gaussians approach
about 174-176
code 177,178
MOG2 175
morphological image processing
about 178
underlying principle 178,179
morphological operators
about 181
Black Hat transform 186
boundary, drawing 183
morphological closing 182
morphological opening 181
Top Hat transform 184
mouse events and slider events
adding, to interfaces 58-63
MSERs (Maximally Stable
Extremal Regions) 246

N

naive background subtraction
about 164-166
working 167-169
negative samples 151
Neural Network approach 127
newVal parameter 256
nose
detecting, framework used 162

(0

objects
isolating, in scene 100-102
objects of specific color
tracking 189-191

[267]

object tracking 189
OCR
about 217
preprocessing step 220
text identification 218
text preprocessing and
segmentation 218, 219
text segmentation 222
OcrEngineMode
about 238
OEM_CUBE_ONLY 238
OEM_DEFAULT 238
OEM_TESSERACT_CUBE_COMBINED
238
OEM_TESSERACT_ONLY 238
OCR function
creating 236-240
output, sending to file 240, 241
oem parameter 260
OpenCV
3D reconstruction 8
about 5
computational photography 10
face recognition 12
feature extraction 9
features 5
GUI, building 6, 7
image processing operations 6
in-built data structures 5
input/output 5
installing 13
installing, on Linux 16, 17
installing, on Mac OS X 14-16
installing, on Windows 13, 14
machine learning 10
object detection 9, 10
object recognition 12
optical flow algorithms 12
shape analysis 12
surface matching 13
text detection and recognition 13
URL 13
video analysis 7
OpenCV calcHist function 82

OpenCV document page, machine learning

reference 128

OpenCV user interface 50
OpenGL support 68-72
optical character recognition. See OCR

P

parameters, mat object
bytes_per_line 240
bytes_per_pixel 240
data 239
height 239
width 239
Path Editor
reference 14
PhotoTool 49
Point object type 39
positive samples 151
predict method, StatModel class
about 129
flags parameter 129
results parameter 129
samples parameter 129
preprocessing step, OCR
about 220
image, thresholding 220, 221
Prune Exhaustive Search 247
psmode parameter 260

R

Rect object type 40

rect parameter 256

regions 252

reinforcement learning 126
ROI (region of interest) 40, 255
RotatedRect object type 40, 41

S

Scalar object type 39
scene
objects, isolating 100-102
seedPoint parameter 256
segmentation modes
PSM_AUTO 239
PSM_AUTO_ONLY 239

[268]

PSM_AUTO_OSD 238
PSM_OSD_ONLY 238
PSM_SINGLE_BLOCK 239
PSM_SINGLE_BLOCK_VERT_TEXT 239
PSM_SINGLE_CHAR 239
PSM_SINGLE_COLUMN 239
PSM_SINGLE_LINE 239
PSM_SINGLE_WORD 239
PSM_SINGLE_WORD_CIRCLE 239
shapes
slimming 179, 180
thickening 180
showHistoCallback function 80
Single Linkage Clustering 253
Size object type 40
StatModel class
calcError(const Ptr<TrainData>& data, bool
test, OutputArray resp) method 130
getVarCount() method 129
isClassifier() method 129
isTrained() method 129
predict method 129
Ptr<_Tp> load(const stringé& filename)
method 129
save(const string& filename) method 129
train method 128
sunglasses
code 161
overlaying, in live video 158-160
supervised learning 126
SVM (support vector machines) 127

T

Tesseract
about 230
import path, setting 233
installing 230
installing, on Mac 236
installing, on Windows 231, 232
libraries, adding to windows path 235
library path, setting 234
linker, configuring 235
reference, for installer 231
setting up, in Visual Studio 233

Tesseract OCR
installing, on operating system 230
Tesseract OCR library
OCR function, creating 236-240
using 236
text API
about 243
extremal region filtering 246
extremal regions 245, 246
scene detection problem 244, 245
text detection 247-254
text extraction 255-258
text recognition 258-263
using 247
working 243
text segmentation, OCR
about 222
adjustment, skewing 227-229
connected areas, creating 222, 223
paragraph blocks, identifying 224-227
text extraction 227
Top Hat transform 184
train method, StatModel class
about 127,128
flags parameter 129
layout parameter 129
p parameter 129
responses parameter 129
samples parameter 129
trainData parameter 129
tri-dimensionality 244

U

unsupervised learning 126
upDiff parameter 256

\'

variety 244
vec object type 38
videos

reading 33-37

[269]

w

warpAffine function 228
warpAffine function, arguments

BORDER 228

BORDER VALUE 228

DST 228

FLAGS 228

M 228

SIZE 228

SRC 228
whitelist parameter 260
WINDOW_AUTOSIZE flag 53
WINDOW_FREERATIO flag 53
WINDOW_KEEPRATIO flag 53
WINDOW_NORMAL flag 53
WINDOW_OPENGL flag 53
Windows

OpenCV, installing on 13, 14

Tesseract, installing 231

open source

community experience distilled

PUBLISHING

Thank you for buying
OpenCV By Example

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

Mastering OpenCV Android
Application Programming

Mastering OpenCV Android

Application Programming
ISBN: 978-1-78398-820-4 Paperback: 216 pages

Master the art of implementing computer vision
algorithms on Android platforms to build robust and
efficient applications

1. Understand and utilise the features of OpenCV,
Android SDK, and OpenGL.

2. Detect and track specific objects in a video
using Optical Flow and Lucas Kanade Tracker.

3. Anadvanced guide full of real-world examples,
helping you to build smart OpenCV Android
applications.

OpenCV Computer Vision Application
Programming Cookbook
Second Edition

OpenCV Computer Vision
Application Programming
Cookbook

Second Edition

ISBN: 978-1-78216-148-6 Paperback: 374 pages

Over 50 recipes to help you build computer vision
applications in C++ using the OpenCV library

1. Master OpenCV, the open source library of the
computer vision community.

2. Master fundamental concepts in computer
vision and image processing.

3. Learn the important classes and functions of
OpenCV with complete working examples
applied on real images.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning Image Processing
with OpenCV

Learning Image Processing with

OpenCV
ISBN: 978-1-78328-765-9 Paperback: 232 pages

Exploit the amazing features of OpenCV to create
powerful image processing applications through
easy-to-follow examples

1. Learn how to build full-fledged image
processing applications using free tools
and libraries.

2. Take advantage of cutting-edge image
processing functionalities included in
OpenCV v3.

3. Understand and optimize various features
of OpenCV with the help of easy-to-grasp
examples.

OpenCV for Secret
Agents

OpenCYV for Secret Agents
ISBN: 978-1-78328-737-6 Paperback: 302 pages

Use OpenCV in six secret projects to augment
your home, car, phone, eyesight, and any photo
or drawing

1. Build OpenCV apps for the desktop, the
Raspberry Pi, Android, and the Unity
game engine.

2. Learn real-time techniques that can be used to
classify images, detecting and recognizing any
person or animal, and studying motion and
distance with superhuman precision.

3. Design hands-free interfaces that are practical
in home automation, in cars, and in discrete
surveillance.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenCV
	Understanding the human visual system
	How do humans understand image content?
	Why is it difficult for machines to understand image content?

	What can you do with OpenCV?
	In-built data structures and input/output
	Image processing operations
	Building GUI
	Video analysis
	3D reconstruction
	Feature extraction
	Object detection
	Machine learning
	Computational photography
	Shape analysis
	Optical flow algorithms
	Face and object recognition
	Surface matching
	Text detection and recognition

	Installing OpenCV
	Windows
	Mac OS X
	Linux

	Summary

	Chapter 2: An Introduction to the Basics of OpenCV
	Basic CMake configuration files
	Creating a library
	Managing dependencies
	Making the script more complex
	Images and matrices
	Reading/writing images
	Reading videos and cameras
	Other basic object types
	The vec object type
	The Scalar object type
	The Point object type
	The Size object type
	The Rect object type
	RotatedRect object type

	Basic matrix operations
	Basic data persistence and storage
	Writing to a file storage

	Summary

	Chapter 3: Learning the Graphical User Interface and Basic Filtering
	Introducing the OpenCV user interface
	A basic graphical user interface with OpenCV
	The graphical user interface with QT
	Adding slider and mouse events to our interfaces
	Adding buttons to a user interface
	OpenGL support
	Summary

	Chapter 4: Delving into Histograms
and Filters
	Generating a CMake script file
	Creating the Graphical User Interface
	Drawing a histogram
	Image color equalization
	Lomography effect
	The cartoonize effect
	Summary

	Chapter 5: Automated Optical Inspection, Object Segmentation, and Detection
	Isolating objects in a scene
	Creating an application for AOI
	Preprocessing the input image
	Noise removal
	Removing the background using the light pattern for segmentation
	The thresholding operation

	Segmenting our input image
	The connected component algorithm
	The findContours algorithm

	Summary

	Chapter 6: Learning Object Classification
	Introducing machine learning concepts
	Computer Vision and the machine learning workflow
	Automatic object inspection classification example
	Feature extraction
	Training an SVM model
	Input image prediction

	Summary

	Chapter 7: Detecting Face Parts and Overlaying Masks
	Understanding Haar cascades
	What are integral images?
	Overlaying a facemask in a live video
	What happened in the code?

	Get your sunglasses on
	Looking inside the code

	Tracking your nose, mouth, and ears
	Summary

	Chapter 8: Video Surveillance, Background Modeling, and Morphological Operations
	Understanding background subtraction
	Naive background subtraction
	Does it work well?

	Frame differencing
	How well does it work?

	The Mixture of Gaussians approach
	What happened in the code?

	Morphological image processing
	What's the underlying principle?

	Slimming the shapes
	Thickening the shapes
	Other morphological operators
	Morphological opening
	Morphological closing
	Drawing the boundary
	White Top-Hat transform
	Black Top-Hat transform

	Summary

	Chapter 9: Learning Object Tracking
	Tracking objects of a specific color
	Building an interactive object tracker
	Detecting points using the Harris corner detector
	Shi-Tomasi Corner Detector
	Feature-based tracking
	The Lucas-Kanade method
	The Farneback algorithm

	Summary

	Chapter 10: Developing Segmentation Algorithms for Text Recognition
	Introducing optical character recognition
	The preprocessing step
	Thresholding the image
	Text segmentation
	Creating connected areas
	Identifying paragraph blocks
	Text extraction and skew adjustment

	Installing Tesseract OCR on your operating system
	Installing Tesseract on Windows
	Setting up Tesseract in Visual Studio

	Installing Tesseract on Mac

	Using Tesseract OCR library
	Creating a OCR function
	Sending the output to a file

	Summary

	Chapter 11: Text Recognition
with Tesseract
	How the text API works
	The scene detection problem
	Extremal regions
	Extremal region filtering

	Using the text API
	Text detection
	Text extraction
	Text recognition

	Summary

	Index

